Numerical Integration.

It is the process of computing the value of a definite integral when we are given a set of numerical values of the integrand $f(x)$ corresponding to some values of the independent variable x.

If $I=\int_{a}^{b} y . d x$. Then I represents the area of the region R under the curve $y=f(x)$ between the ordinates $x=a, x=b$ and the x-axis.

(1) Trapezoidal rule

Let $y=f(x)$ be a function defined on $[\mathrm{a}, \mathrm{b}]$ which is divided into n equal sub-intervals each of width h so that $b-a=n h$.
Let the values of $f(x)$ for $(n+1)$ equidistant arguments
$x_{0}=a, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \ldots \ldots ., x_{n}=x_{0}+n h=b$ be $y_{0}, y_{1}, y_{2}, \ldots \ldots \ldots . y_{n}$ respectively.
Then $\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{0}+n h} y d x=h\left[\frac{1}{2}\left(y_{0}+y_{n}\right)+\left(y_{1}+y_{2}+\ldots . .+y_{n-1}\right)\right]$
$=\frac{h}{2}\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots \ldots+y_{n-1}\right)\right]$
This rule is known as Trapezoidal rule.
The geometrical significance of this rule is that the curve $y=f(x)$ is replaced by n straight lines joining the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right) ;\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) ;\left(x_{n-1}, y_{n-1}\right)$ and $\left(x_{n}, y_{n}\right)$. The area bounded by the curve $y=f(x)$. The ordinate $x=x_{0}$ and $x=x_{n}$ and the x -axis, is then approximately equivalent to the sum of the areas of the n trapeziums obtained.
(2) Simpson's one third rule: Let $y=f(x)$ be a function defined on $[\mathrm{a}, \mathrm{b}]$ which is divided into n (an even number) equal parts each of width h so that $b-a=n h$.

Suppose the function $y=f(x)$ attains values $y_{0}, y_{1}, y_{2}, \ldots \ldots \ldots . y_{n}$ at $n+1$ equidistant points $x_{0}=a, x_{1}=x_{0}+h, x_{2}=x_{0}+2 h, \ldots \ldots, x_{n}=x_{0}+n h=b$ respectively. Then
$\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{0}+n h} y d x=\frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+y_{5}+\ldots .+y_{n-1}\right)+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right]$ $=$ (one-third of the distance between two consecutive ordinates)
\times [(sum of the extreme ordinates) +4 (sum of odd ordinates) +2 (sum of even ordinates)]

This formula is known as Simpson's one-third rule. Its geometric significance is that we replace the graph of the given function by $\frac{n}{2}$ arcs of second degree polynomials, or parabolas with vertical axes. It is to note here that the interval $[a, b]$ is divided into an even number of subinterval of equal width.

Simpson's rule yield more accurate results than the trapezoidal rule. Small size of interval gives more accuracy.

