Number of Combinations without Repetition.

The number of combinations (selections or groups) that can be formed from n different objects taken $r(0 \leq r \leq n)$ at a time is ${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$

Let the total number of selections (or groups) = x. Each group contains r objects, which can be arranged in r ! Ways. Hence the number of arrangements of r objects $=x \times(r!)$. But the number of arrangements $=$ ${ }^{n} P_{r}$.
$\Rightarrow x \times(r!)={ }^{n} P_{r} \Rightarrow x=\frac{{ }^{n} P_{r}}{r!} \Rightarrow x=\frac{n!}{r!(n-r)!}={ }^{n} C_{r}$.

Important Tips

* ${ }^{n} C_{r}$ is a natural number.
๑ $\quad{ }^{n} C_{r}={ }^{n} C_{n-r}$
- $\quad{ }^{n} C_{x}={ }^{n} C_{y} \Leftrightarrow x=y$ or $x+y=n$
(6. If n is even then the greatest value of ${ }^{n} C_{r}$ is ${ }^{n} C_{n / 2}$.
greatest value of ${ }^{n} C_{r}$ is $\frac{{ }^{n} C_{n+1}}{2}$ or $\frac{{ }^{n} C_{n-1}}{2}$.
(6) ${ }^{n} C_{r}=\frac{n}{r} .{ }^{n-1} C_{r-1}$
- ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots . .+{ }^{n} C_{n}=2^{n}$
${ }^{n} C_{0}+{ }^{n} C_{2}+{ }^{n} C_{4}+\ldots \ldots .={ }^{n} C_{1}+{ }^{n} C_{3}+{ }^{n} C_{5}+\ldots . .=2^{n-1}$
$\sigma \quad{ }^{2 n+1} C_{0}+{ }^{2 n+1} C_{1}+{ }^{2 n+1} C_{2}+\ldots . .+{ }^{2 n+1} C_{n}=2^{2 n}$
® $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$
\square
${ }^{n} C_{n}+{ }^{n+1} C_{n}+{ }^{n+2} C_{n}+{ }^{n+3} C_{n}+\ldots .+{ }^{2 n-1} C_{n}={ }^{2 n} C_{n+1}$
(If n is odd then the

Note: Number of combinations of n dissimilar things taken all at a time ${ }^{n} C_{n}=\frac{n!}{n!(n-n)!}=\frac{1}{0!}=1$, $(\because 0!=1)$.

