Number of Combinations without Repetition.

The number of combinations (selections or groups) that can be formed from n different objects taken $r(0 \le r \le n)$ at a time is ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

Let the total number of selections (or groups) = x. Each group contains r objects, which can be arranged in r !Ways. Hence the number of arrangements of r objects = $x \times (r!)$. But the number of arrangements = ${}^{n} P_{r}$.

$$\Rightarrow x \times (r!) = {^n}P_r \Rightarrow x = \frac{{^n}P_r}{r!} \Rightarrow x = \frac{n!}{r!(n-r)!} = {^n}C_r.$$

Important Tips

Ē	${}^{n}C_{r}$ is a natural number.	$G^{n}C_{0} = {}^{n}C_{n} = 1, {}^{n}C_{1} = n$
Ŧ	${}^{n}C_{r} = {}^{n}C_{n-r}$	$G^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
Ŧ	${}^{n}C_{x} = {}^{n}C_{y} \Leftrightarrow x = y \text{ or } x + y = n$	$\mathfrak{P} n. {}^{n-1}C_{r-1} = (n-r+1)^n C_{r-1}$
Ŧ	If n is even then the greatest value of ${}^{n}C_{r}$ is ${}^{n}C_{n/2}$.	If n is odd then the
greatest value of ${}^{n}C_{r}$ is $\frac{{}^{n}C_{n+1}}{2}$ or $\frac{{}^{n}C_{n-1}}{2}$.		
Ŧ	${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1}$	$\operatorname{CP} \frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$
Ŧ	${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$	Ē
${}^{n}C_{0} + {}^{n}C_{2} + {}^{n}C_{4} + \dots = {}^{n}C_{1} + {}^{n}C_{3} + {}^{n}C_{5} + \dots = 2^{n-1}$		
Ŧ	${}^{2n+1}C_0 + {}^{2n+1}C_1 + {}^{2n+1}C_2 + \dots + {}^{2n+1}C_n = 2^{2n}$	P
${}^{n}C_{n} + {}^{n+1}C_{n} + {}^{n+2}C_{n} + {}^{n+3}C_{n} + \dots + {}^{2n-1}C_{n} = {}^{2n}C_{n+1}$		

Note: Number of combinations of n dissimilar things taken all at a time ${}^{n}C_{n} = \frac{n!}{n!(n-n)!} = \frac{1}{0!} = 1$, (:: 0!=1).