Division into Groups.

Case I:(1) The number of ways in which n different things can be arranged into r different groups is ${ }^{n+r-1} P_{n}$ or $\mathrm{n}!^{n-1} C_{r-1}$ According as blank group are or are not admissible.
(2) The number of ways in which n different things can be distributed into r different group is $r^{n}-{ }^{r} C_{1}(r-1)^{n}+{ }^{r} C_{2}(r-2)^{n}-\ldots \ldots \ldots .+(-1)^{n-1}{ }^{n} C_{r-1}$ or Coefficient of x^{n} is $n!\left(e^{x}-1\right)^{r}$ Here blank groups are not allowed.
(3) Number of ways in which $m \times n$ different objects can be distributed equally among n persons (or numbered groups) $=$ (number of ways of dividing into groups) \times (number of groups) $!=\frac{(m n)!n!}{(m!)^{n} n!}=\frac{(m n)!}{(m!)^{n}}$.

Case II:(1) The number of ways in which $(m+n)$ different things can be divided into two groups which contain m and n things respectively is, ${ }^{m+n} C_{m} .{ }^{n} C_{n}=\frac{(m+n)!}{m!n!}, m \neq n$.

Corollary: If $m=n$, then the groups are equal size. Division of these groups can be given by two types.

Type I: If order of group is not important:The number of ways in which 2 n different things can be divided equally into two groups is $\frac{(2 n)!}{2!(n!)^{2}}$

Type II:If order of group is important: The number of ways in which 2 n different things can be divided equally into two distinct groups is $\frac{(2 n)!}{2!(n!)^{2}} \times 2!=\frac{2 n!}{(n!)^{2}}$
(2) The number of ways in which $(m+n+p)$ different things can be divided into three groups which contain m, n and p things respectively is ${ }^{m+n+p} C_{m} \cdot{ }^{n+p} C_{n} \cdot{ }^{p} C_{p}=\frac{(m+n+p)!}{m!n!p!}, m \neq n \neq p$
Corollary: If $m=n=p$, then the groups are equal size. Division of these groups can be given by two types.
Type I: If order of group is not important: The number of ways in which 3 p different things can be divided equally into three groups is $\frac{(3 p)!}{3!(p!)^{3}}$

Type II:If order of group is important: The number of ways in which $3 p$ different things can be divided equally into three distinct groups is $\frac{(3 p)!}{3!(p!)^{3}} t 3!=\frac{(3 p)!}{(p!)^{3}}$

Note: If order of group is not important: The number of ways in which mn different things can be divided equally into m groups is $\frac{m n!}{(n!)^{m} m!}$

If order of group is important: The number of ways in which m different things can be divided equally into m distinct groups is $\frac{(m n)!}{(n!)^{m} m!} \times m!=\frac{(m n)!}{(n!)^{m}}$.

