Multinomial Theorem.

Let $x_{1}, x_{2}, \ldots \ldots . ., x_{m}$ be integers. Then number of solutions to the equation $x_{1}+x_{2}+\ldots \ldots .+x_{m}=n$

Subject to the condition $a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}, \ldots \ldots ., a_{m} \leq x_{m} \leq b_{m}$
is equal to the coefficient of x^{n} in
$\left(x^{a_{1}}+x^{a_{1}+1}+\ldots . .+x^{b_{1}}\right)\left(x^{a_{2}}+x^{a_{2}+1}+\ldots . .+x^{b_{2}}\right) \ldots \ldots\left(x^{a_{m}}+x^{a_{m+1}}+\ldots . .+x^{b_{m}}\right)$

This is because the number of ways, in which sum of m integers in (i) equals n, is the same as the number of times x^{n} comes in (iii).
(1) Use of solution of linear equation and coefficient of a power in expansions to find the number of ways of distribution:
(i) the number of integral solutions of $x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{r}=n$ where $x_{1} \geq 0, x_{2} \geq 0, \ldots \ldots x_{r} \geq 0$ is the same as the number of ways to distribute n identical things among r persons.
This is also equal to the coefficient of x^{n} in the expansion of $\left(x^{0}+x^{1}+x^{2}+x^{3}+\ldots . . .\right)^{r}$
$=$ coefficient of x^{n} in $\left(\frac{1}{1-x}\right)^{r}=$ coefficient of x^{n} in $(1-x)^{-r}$
$=$ coefficient of x^{n} in $\left\{1+r x+\frac{r(r+1)}{2!} x^{2}+\ldots \ldots .+\frac{r(r+1)(r+2) \ldots . .(r+n-1)}{n!} x^{n}+\ldots \ldots .\right.$.
$=\frac{r(r+1)(r+2) \ldots(r+n-1)}{n!}=\frac{(r+n-1)!}{n!(r-1)!}={ }^{n+r-1} C_{r-1}$
(ii) The number of integral solutions of $x_{1}+x_{2}+x_{3}+\ldots . .+x_{r}=n$ where $x_{1} \geq 1, x_{2} \geq 1, \ldots \ldots x_{r} \geq 1$ is same as the number of ways to distribute n identical things among r persons each getting at least 1. This also equal to the coefficient of x^{n} in the expansion of $\left(x^{1}+x^{2}+x^{3}+\ldots \ldots .\right)^{r}$

$$
\begin{aligned}
& =\text { coefficient of } x^{n} \text { in }\left(\frac{x}{1-x}\right)^{r}=\text { coefficient of } x^{n} \text { in } x^{r}(1-x)^{-r} \\
& =\text { coefficient of } x^{n} \text { in } x^{r}\left\{1+r x+\frac{r(r+1)}{2!} x^{2}+\ldots . .+\frac{r(r+1)(r+2) \ldots \ldots .(r+n-1)}{n!} x^{n}+\ldots \ldots\right\} \\
& =\text { coefficient of } x^{n-r} \text { in }\left\{1+r x+\frac{r(r+1)}{2!} x^{2}+\ldots . .+\frac{r(r+1)(r+2) \ldots .(r+n-1)}{n!} x^{n}+\ldots . .\right\} \\
& =\frac{r(r+1)(r+2) \ldots \ldots .(r+n-r-1)}{(n-r)!}=\frac{r(r+1)(r+2) \ldots . .(n-1)}{(n-r)!}=\frac{(n-1)!}{(n-r)!(r-1)!}=^{n-1} C_{r-1} .
\end{aligned}
$$

