Multinomial Theorem
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This is because the number of ways, in which sum of m integers in (i) equals n, is the same as the
number of times x” comes in (iii).

(1) Use of solution of linear equation and coefficient of a power in expansions to find the
number of ways of distribution:

(i) the number of integral solutions of x, +x, +x; +...... +x, =n where x;, 20,x, 20,.....x, >0
is the same as the number of ways to distribute n identical things among r persons.

This is also equal to the coefficient of x” in the expansion of (x” +x' +x% + x> +....)"
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(i) The number of integral solutions of x, + x, +x; +..... +x, =n where x; >1,x, > 1,....... x, 21

is same as the number of ways to distribute n identical things among r persons each getting at
least 1. This also equal to the coefficient of x” in the expansion of (x' +x* +x° +.....)"

= coefficient of x” in ( i
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