Number of Divisors.

Let $N=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \ldots \ldots . . p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2}, p_{3}, \ldots \ldots . p_{k}$ are different primes and $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots ., \alpha_{k}$ are natural numbers then:
(1) The total number of divisors of N including 1 and N is $=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \ldots .\left(\alpha_{k}+1\right)$
(2) The total number of divisors of N excluding 1 and N is $=$ $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \ldots . .\left(\alpha_{k}+1\right)-2$
(3) The total number of divisors of N excluding 1 or N is $=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \ldots . .\left(\alpha_{k}+1\right)-1$
(4) The sum of these divisors is $=\left(p_{1}^{0}+p_{2}^{1}+p_{3}^{2}+\ldots \ldots .+p_{1}^{\alpha_{1}}\right)\left(p_{2}^{0}+p_{2}^{1}+p_{2}^{2}+\ldots+p_{2}^{\alpha_{2}}\right) \ldots .\left(p_{k}^{0}+p_{k}^{1}+p_{k}^{2}+\ldots .+p_{k}^{\alpha_{k}}\right)$
(5) The number of ways in which N can be resolved as a product of two factors is
$\left\{\frac{1}{2}\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots .\left(\alpha_{k}+1\right)\right.$, If N is not a perfect square $\frac{1}{2}\left[\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots . .\left(\alpha_{k}+1\right)+1\right]$, If N is a perfect square
(6) The number of ways in which a composite number N can be resolved into two factors which are relatively prime (or co-prime) to each other is equal to 2^{n-1} where n is the number of different factors in N .

Important Tips

- All the numbers whose last digit is an even number $0,2,4,6$ or 8 are divisible by 2 .
- All the numbers sum of whose digits are divisible by 3 , is divisible by 3 e.g. 534. Sum of the digits is 12 , which are divisible by 3 , and hence 534 is also divisible by 3 .
- All those numbers whose last two-digit number is divisible by 4 are divisible by 4 e.g. 7312, 8936 , are such that 12,36 are divisible by 4 and hence the given numbers are also divisible by 4.
All those numbers, which have either 0 or 5 as the last digit, are divisible by 5 .
- All those numbers, which are divisible by 2 and 3 simultaneously, are divisible by 6. e.g., 108, 756 etc.
- All those numbers whose last three-digit number is divisible by 8 are divisible by 8 .
- All those numbers sum of whose digit is divisible by 9 are divisible by 9 .
- All those numbers whose last two digits are divisible by 25 are divisible by 25 e.g., 73125, 2400 etc.

