Exponent of Prime p in $n!$

Let p be a prime number and n be a positive integer. Then the last integer amongst $1,2,3, \ldots \ldots$. (n - 1), n which is divisible by p is $\left[\frac{n}{p}\right] p$, where $\left[\frac{n}{p}\right]$ denote the greatest integer less than or equal to $\frac{n}{p}$.
For example: $\left[\frac{10}{3}\right]=3,\left[\frac{12}{5}\right]=2,\left[\frac{15}{3}\right]=5$ etc.
Let $E_{p}(n)$ denotes the exponent of the prime p in the positive integer n. Then,
$E_{p}(n!)=E_{p}(1.2 .3 \ldots \ldots \ldots . .(n-1) n)=E_{p}\left(p .2 p .3 p \ldots \ldots .\left[\frac{n}{p}\right] p\right)=\left[\frac{n}{p}\right]+E_{p}\left(1.2 .3 \ldots \ldots .\left[\frac{n}{p}\right]\right)$
$[\because$ Remaining integers between 1 and n are not divisible by $p]$
Now the last integer amongst $1,2,3, \ldots . .\left[\frac{n}{p}\right]$ Which is divisible by p is
$\left[\frac{n / p}{p}\right]=\left[\frac{n}{p^{2}}\right]=\left[\frac{n}{p}\right]+E_{p}\left(p, 2 p, 3 p \ldots .\left[\frac{n}{p^{2}}\right] p\right)$ Because the remaining natural numbers from 1 to $\left[\frac{n}{p}\right]$ are not divisible by $p=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+E_{p}\left(1.2 .3 \ldots \ldots .\left[\frac{n}{p^{2}}\right]\right)$

Similarly we get $E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots . .\left[\frac{n}{p^{s}}\right]$
where S is the largest natural number. Such that $p^{S} \leq n<p^{S+1}$.

