Exponent of Prime *p* in *n* !

Let p be a prime number and n be a positive integer. Then the last integer amongst 1, 2, 3,(n - 1), n which is divisible by p is $\left[\frac{n}{p}\right]p$, where $\left[\frac{n}{p}\right]$ denote the greatest integer less than or equal to $\frac{n}{p}$.

For example: $\left[\frac{10}{3}\right] = 3$, $\left[\frac{12}{5}\right] = 2$, $\left[\frac{15}{3}\right] = 5$ etc.

Let $E_p(n)$ denotes the exponent of the prime p in the positive integer n. Then,

$$E_{p}(n!) = E_{p}(1.2.3...(n-1)n) = E_{p}\left(p.2p.3p...\left[\frac{n}{p}\right]p\right) = \left[\frac{n}{p}\right] + E_{p}\left(1.2.3...\left[\frac{n}{p}\right]\right)$$

[:: Remaining integers between 1 and *n* are not divisible by p]

Now the last integer amongst 1, 2, 3,.... $\left\lfloor \frac{n}{p} \right\rfloor$ Which is divisible by p is $\left\lfloor \frac{n/p}{p} \right\rfloor = \left\lfloor \frac{n}{p^2} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + E_p \left(p, 2p, 3p \dots \left\lfloor \frac{n}{p^2} \right\rfloor p \right)$ Because the remaining natural numbers from 1 to $\left\lfloor \frac{n}{p} \right\rfloor$ are not divisible by $p = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + E_p \left(1.2.3 \dots \left\lfloor \frac{n}{p^2} \right\rfloor \right)$

Similarly we get $E_p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots \left[\frac{n}{p^s}\right]$

where *S* is the largest natural number. Such that $p^{S} \le n < p^{S+1}$.