Number of Permutations without Repetition.

(1) Arranging n objects, taken r at a time equivalent to filling r places from n things

r-places:	1	2	3	4		r	
Number of choices:	n	(n-1)	(n – 2)(n –	3)	n <u>– (r–</u> 1	.)

The number of ways of arranging = The number of ways of filling r places.

$$= n(n-1)(n-2)\dots(n-r+1) = \frac{n(n-1)(n-2)\dots(n-r+1)((n-r)!)}{(n-r)!} = \frac{n!}{(n-r)!} = {n! \choose (n-r)!} = {n! \binom (n-r)$$

(2) The number of arrangements of n different objects taken all at a time = ${}^{n}P_{n} = n!$

Note:
$${}^{n}P_{0} = \frac{n!}{n!} = 1; {}^{n}P_{r} = n . {}^{n-1}P_{r-1}$$

 $0 != 1; \frac{1}{(-r)!} = 0 \text{ or } (-r)! = \infty \ (r \in N)$