Number of Permutations without Repetition.

(1) Arranging n objects, taken r at a time equivalent to filling r places from n things
r-places:
Number of choices:

The number of ways of arranging = The number of ways of filling r places.
$=n(n-1)(n-2) \ldots \ldots .(n-r+1)=\frac{n(n-1)(n-2) \ldots . .(n-r+1)((n-r)!)}{(n-r)!}=\frac{n!}{(n-r)!}={ }^{n} P_{r}$
(2) The number of arrangements of n different objects taken all at a time $={ }^{n} P_{n}=n$!

Note: ${ }^{n} P_{0}=\frac{n!}{n!}=1 ;{ }^{n} P_{r}=n .{ }^{n-1} P_{r-1}$
$0!=1 ; \frac{1}{(-r)!}=0$ or $(-r)!=\infty \quad(r \in N)$

