Conditional Permutations.

(1) Number of permutations of n dissimilar things taken r at a time when p particular things always occur = ${}^{n-p} C_{r-p} r!$

(2) Number of permutations of n dissimilar things taken r at a time when p particular things never occur = ${}^{n-p}C_r r!$

(3) The total number of permutations of n different things taken not more than r at a time, when each thing may be repeated any number of times, is $\frac{n(n^r - 1)}{n - 1}$.

(4) Number of permutations of n different things, taken all at a time, when m specified things always come together is $m ! \times (n - m + 1)!$

(5) Number of permutations of n different things, taken all at a time, when m specified things never come together is $n!-m! \times (n-m+1)!$

(6) Let there be n objects, of which m objects are alike of one kind, and the remaining (n - m) objects are alike of another kind. Then, the total number of mutually distinguishable permutations that can be formed from these objects is $\frac{n!}{(m!) \times (n-m)!}$.

Note: The above theorem can be extended further i.e., if there are n objects, of which p_1 are alike of one kind; p_2 are alike of another kind; p_3 are alike of 3^{rd} kind;.....: p_r are alike of r^{th} kind such that $p_1 + p_2 + \dots + p_r = n$; then the number of permutations of these n objects is

 $\frac{n!}{(p_1!)\times(p_2!)\times\ldots\times\times(p_r!)}.$

Important Tips

Gap method: Suppose 5 males A, B, C, D, E are arranged in a row as $\times A \times B \times C \times D \times E \times$. There will be six gaps between these five. Four in between and two at either end. Now if three females P, Q, R are to be arranged so that no two are together we shall use gap method i.e., arrange them in between these 6 gaps. Hence the answer will be ${}^{6}P_{3}$.

Together: Suppose we have to arrange 5 persons in a row which can be done in 5 ! = 120 ways. But if two particular persons are to be together always, then we tie these two particular persons with a string. Thus we have 5 - 2 + 1 (1 corresponding to these two together) = 3 + 1 = 4 units, which can be arranged in 4! ways. Now we loosen the string and these two particular can be arranged in 2 !ways. Thus total arrangements = $24 \times 2 = 48$.

Never together = Total - Together = 120 - 48 = 72.

Ways. Hence the required number of ways = $6 \times 3 = 18$.