Conditional Permutations.

(1) Number of permutations of n dissimilar things taken r at a time when p particular things always occur $\quad={ }^{n-p} C_{r-p} r$!
(2) Number of permutations of n dissimilar things taken r at a time when p particular things never occur $\quad={ }^{n-p} C_{r} r$!
(3) The total number of permutations of n different things taken not more than r at a time, when each thing may be repeated any number of times, is $\frac{n\left(n^{r}-1\right)}{n-1}$.
(4) Number of permutations of n different things, taken all at a time, when m specified things always come together is $m!\times(n-m+1)$!
(5) Number of permutations of n different things, taken all at a time, when m specified things never come together is $n!-m!\times(n-m+1)$!
(6) Let there be n objects, of which m objects are alike of one kind, and the remaining ($n-m$) objects are alike of another kind. Then, the total number of mutually distinguishable permutations that can be formed from these objects is $\frac{n!}{(m!) \times(n-m)!}$.

Note: The above theorem can be extended further i.e., if there are n objects, of which p_{1} are alike of one kind; p_{2} are alike of another kind; p_{3} are alike of $3^{\text {rd }}$ kind;......: p_{r} are alike of $r^{\text {th }}$ kind such that $p_{1}+p_{2}+\ldots \ldots+p_{r}=n$; then the number of permutations of these n objects is
$\frac{n!}{\left(p_{1}!\right) \times\left(p_{2}!\right) \times \ldots \ldots \times\left(p_{r}!\right)}$.

- Gap method: Suppose 5 males A, B, C, D, E are arranged in a row as $\times \mathrm{A} \times \mathrm{B} \times \mathrm{C} \times \mathrm{D} \times \mathrm{E}$ \times. There will be six gaps between these five. Four in between and two at either end. Now if three females P, Q, R are to be arranged so that no two are together we shall use gap method i.e., arrange them in between these 6 gaps. Hence the answer will be ${ }^{6} P_{3}$.
- Together: Suppose we have to arrange 5 persons in a row which can be done in 5 ! $=120$ ways. But if two particular persons are to be together always, then we tie these two particular persons with a string. Thus we have $5-2+1$ (1 corresponding to these two together) $=3+1=$ 4 units, which can be arranged in 4 ! ways. Now we loosen the string and these two particular can be arranged in 2 !ways. Thus total arrangements $=24 \times 2=48$.

Never together $=$ Total - Together $=120-48=72$.
Ways. Hence the required number of ways $=6 \times 3=18$.

