Combinations

Definition

Each of the different groups or selections which can be formed by taking some or all of a number of objects, irrespective of their arrangements, is called a combination.

Suppose we want to select two out of three persons A, B and C.
We may choose $A B$ or $B C$ or $A C$.
Clearly, $A B$ and $B A$ represent the same selection or group but they give rise to different arrangements.

Clearly, in a group or selection, the order in which the objects are arranged is immaterial.
Notation: The number of all combinations of n things, taken r at a time is denoted by $C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}$.
(1) Difference between a permutation and combination : (i) In a combination only selection is made whereas in a permutation not only a selection is made but also an arrangement in a definite order is considered.
(ii) In a combination, the ordering of the selected objects is immaterial whereas in a permutation, the ordering is essential. For example A, B and B, A are same as combination but different as permutations.
(iii) Practically to find the permutation of n different items, taken r at a time, we first select r items from n items and then arrange them. So usually the number of permutations exceeds the number of combinations.
(iv) Each combination corresponds to many permutations. For example, the six permutations $A B C, A C B, B C A, B A C, C B A$ and $C A B$ correspond to the same combination $A B C$.

Note: Generally we use the word 'arrangements' for permutations and word "selection" for combinations.

