Differentiability of a Function at a Point.

(1) Meaning of differentiability at a point:

Consider the function $f(x)$ defined on an open interval (b, c) let $P(a, f(a))$ be a point on the curve $y=f(x)$ and let $Q(a-h, f(a-h))$ and $R(a+h, f(a+h))$ be two neighboring points on the left hand side and right hand side respectively of the point P.
Then slope of chord $P Q=\frac{f(a-h)-f(a)}{(a-h)-a}=\frac{f(a-h)-f(a)}{-h}$

And, slope of chord $P R=\frac{f(a+h)-f(a)}{a+h-a}=\frac{f(a+h)-f(a)}{h}$.
\because As $h \rightarrow 0$, point Q and R both tends to P from left hand and right hand respectively.
Consequently, chords $P Q$ and $P R$ becomes tangent at point P.
Thus, $\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0}$ (slope of chord $\left.P Q\right)=\lim _{Q \rightarrow P}$ (slope of chord $P Q$)

Slope of the tangent at point P, which is limiting position of the chords drawn on the left hand side of point P and $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}$ (slope of chord $\left.P R\right)=\lim _{R \rightarrow P}$ (slope of chord $P R$).
\Rightarrow Slope of the tangent at point P, which is the limiting position of the chords drawn on the right hand side of point P.
Now, $f(x)$ is differentiable at $x=a \Leftrightarrow \lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
\Leftrightarrow There is a unique tangent at point P.
Thus, $f(x)$ is differentiable at point P, iff there exists a unique tangent at point P. In other words, $f(x)$ is differentiable at a point P iff the curve does not have P as a corner point. i.e., "the function is not differentiable at those points on which function has jumps (or holes) and sharp edges."
Let us consider the function $f(x) \neq x-1 \mid$, which can be graphically shown,
Which show $f(x)$ is not differentiable at $x=1$. Since, $f(x)$ has sharp edge at $x=1$.

Mathematically:The right hand derivative at $x=1$ is 1 and left-hand derivative at $x=1$ is -1 . Thus, $f(x)$ is not differentiable at $x=1$.
(2) Right hand derivative:Right hand derivative of $f(x)$ at $x=a$, denoted by $f^{\prime}(a+0)$ or $f^{\prime}(a+)$, is the $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
(3) Left hand derivative:Left hand derivative of $f(x)$ at $x=a$, denoted by $f^{\prime}(a-0)$ or $f^{\prime}(a-)$, is the $\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$.
(4) A function $f(x)$ is said to be differentiable (finitely) at $x=a$ if $f^{\prime}(a+0)=f^{\prime}(a-0)=$ finite i.e., $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=$ finite and the common limit is called the derivative of $f(x)$ at $x=a$, denoted by $f^{\prime}(a)$. Clearly, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\{x \rightarrow a$ from the left as well as from the right\}.

