
   Differentiability of a Function at a Point. 
 

(1) Meaning of differentiability at a point: 
Consider the function )(xf  defined on an open 

interval ),( cb  let ))(,( afaP  be a point on the curve 

)(xfy   and let Q ))(,( hafha   and 

))(,( hafhaR   be two neighboring points on the 

left hand side and right hand side respectively of the 
point P. 
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 As h 0, point Q and R both tends to P from left hand and right hand respectively. 
Consequently, chords PQ and PR becomes tangent at point P. 
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Slope of the tangent at point P, which is limiting position of the chords drawn on the left hand 

side of point P and 
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lim  (slope of chord PR). 

 Slope of the tangent at point P, which is the limiting position of the chords drawn on the 
right hand side of point P. 

Now, )(xf  is differentiable at ax  
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 There is a unique tangent at point P. 
Thus, )(xf  is differentiable at point P, iff there exists a unique tangent at point P. In other words, 

)(xf  is differentiable at a point P iff the curve does not have P as a 

corner point. i.e., "the function is not differentiable at those points 
on which function has jumps (or holes) and sharp edges.” 
Let us consider the function |1|)(  xxf , which can be graphically 

shown, 
Which show )(xf  is not differentiable at 1x . Since, )(xf has sharp 

edge at 1x . 
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Mathematically:The right hand derivative at 1x  is 1 and left-hand derivative at 1x  is –1. 
Thus, )(xf  is not differentiable at 1x . 

(2) Right hand derivative:Right hand derivative of )(xf at ax  , denoted by )0(' af or )(' af , 

is the
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(3) Left hand derivative:Left hand derivative of )(xf  at ,ax   denoted by )0(' af or )(' af , is 

the
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(4) A function )(xf  is said to be differentiable (finitely) at x = a if )0(')0('  afaf = finite 

i.e., 
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 = finite and the common limit is called the derivative of 

)(xf at ax  , denoted by )(' af . Clearly, 
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