Differentiability of a Function at a Point.

(1) Meaning of differentiability at a point:

Consider the function f(x) defined on an open interval (b, c) let P(a, f(a)) be a point on the curve y = f(x) and let Q(a - h, f(a - h)) and R(a + h, f(a + h)) be two neighboring points on the left hand side and right hand side respectively of the point P.

Then slope of chord $PQ = \frac{f(a-h) - f(a)}{(a-h) - a} = \frac{f(a-h) - f(a)}{-h}$

And, slope of chord $PR = \frac{f(a+h) - f(a)}{a+h-a} = \frac{f(a+h) - f(a)}{h}$.

: As $h \rightarrow 0$, point Q and R both tends to P from left hand and right hand respectively. Consequently, chords PQ and PR becomes tangent at point P.

Thus, $\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = \lim_{h \to 0}$ (slope of chord PQ) = $\lim_{Q \to P}$ (slope of chord PQ)

Slope of the tangent at point *P*, which is limiting position of the chords drawn on the left hand side of point *P* and $\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h\to 0}$ (slope of chord *PR*) = $\lim_{R\to P}$ (slope of chord *PR*). \Rightarrow Slope of the tangent at point *P*, which is the limiting position of the chords drawn on the right hand side of point *P*.

Now, f(x) is differentiable at $x = a \Leftrightarrow \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

 \Leftrightarrow There is a unique tangent at point *P*.

Thus, f(x) is differentiable at point P, iff there exists a unique tangent at point P. In other words,

f(x) is differentiable at a point *P* iff the curve does not have *P* as a corner point. *i.e.*, "the function is not differentiable at those points on which function has jumps (or holes) and sharp edges."

Let us consider the function $f(x) \neq |x-1|$, which can be graphically shown,

Which show f(x) is not differentiable at x = 1. Since, f(x) has sharp edge at x = 1.

Mathematically: The right hand derivative at x = 1 is 1 and left-hand derivative at x = 1 is -1. Thus, f(x) is not differentiable at x = 1.

(2) **Right hand derivative:** Right hand derivative of f(x) at x = a, denoted by f'(a + 0) or f'(a+),

is the $\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$.

(3) **Left hand derivative:**Left hand derivative of f(x) at x = a, denoted by f'(a - 0) or f'(a -), is the $\lim_{h \to 0} \frac{f(a - h) - f(a)}{-h}$.

(4) A function f(x) is said to be differentiable (finitely) at x = a if f'(a + 0) = f'(a - 0) = finite

i.e., $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$ = finite and the common limit is called the derivative of

f(x) at x = a, denoted by f'(a). Clearly, $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ { $x \to a$ from the left as well as from the violated

the right}.