Inverse Function.

If $f: A \to B$ be a one-one onto (bijection) function, then the mapping $f^{-1}: B \to A$ which associates each element $b \in B$ with element $a \in A$, such that f(a) = b, is called the inverse function of the function $f: A \to B$

 $f^{-1}: B \to A, f^{-1}(b) = a \Longrightarrow f(a) = b$

In terms of ordered pairs inverse function is defined as $f^{-1} = (b, a)$ if $(a, b) \in f$.

Note: For the existence of inverse function, it should be one-one and onto.

Important Tips

- *The Inverse of a bijection is also a bijection function.*
- *The set of a bijection is unique.*
- $\mathcal{F}(f^{-1})^{-1}=f$
- The f and g are two bijections such that (gof) exists then $(gof)^{-1} = f^{-1}og^{-1}$.

[∞] If $f: A \rightarrow B$ is a bijection then $f^{-1}: B \rightarrow A$ is an inverse function of f. $f^{-1}of = I_A$ and for $f^{-1} = I_B$. Here I_A is an identity function on set A, and I_B is an identity function on set B.