Inverse Function.

If $f: A \rightarrow B$ be a one-one onto (bijection) function, then the mapping $f^{-1}: B \rightarrow A$ which associates each element $b \in B$ with element $a \in A$, such that $f(a)=b$, is called the inverse function of the function $f: A \rightarrow B$
$f^{-1}: B \rightarrow A, f^{-1}(b)=a \Rightarrow f(a)=b$
In terms of ordered pairs inverse function is defined as $f^{-1}=(b, a)$ if $(a, b) \in f$.

Note: For the existence of inverse function, it should be one-one and onto.

Important Tips

- Inverse of a bijection is also a bijection function.
- Inverse of a bijection is unique.
- $\left(f^{1}\right)^{-1}=f$

If f and g are two bijections such that (gof) exists then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
σ^{-}Iff: $A \rightarrow B$ is a bijection then $f^{1}: B \rightarrow A$ is an inverse function of f. f^{1} of $=I_{A}$ and fof $f^{1}=I_{B}$. Here I_{A} is an identity function on set A, and I_{B} is an identity function on set B.

