Definition of Function.

(1) Function can be easily defined with the help of the concept of mapping. Let X and Y be any two non-empty sets. "A function from X to Y is a rule or correspondence that assigns to each element of set X, one and only one element of set Y '. Let the correspondence be ' f then mathematically we write $f: X \rightarrow Y$ where $y=f(x), x \in X$ and $y \in Y$. We say that ' y ' is the image of ' x ' under f (or x is the pre image of y).

Two things should always be kept in mind:
(i) A mapping $f: X \rightarrow Y$ is said to be a function if each element in the set X hasits image in set Y. It is also possible that there are few elements in set Y which are not the images of any element in set X.
(ii) Every element in set X should have one and only one image. That means it is impossible to have more than one image for a specific element in set X. Functions cannot be multi-valued (A mapping that is multi-valued is called a relation from X and Y e.g.

Function

Not function

Function

Not function
(2) Testing for a function by vertical line test:A relation $f: A \rightarrow B$ is a function or not it can be checked by a graph of the relation. If it is possible to draw a vertical line which cuts the given curve at more than one point then the given relation is not a function and when this vertical line means line parallel to γ-axis cuts the curve at only one point then it is a function.Figure (iii) and (iv) represents a function.

(3) Number of functions:Let X and Y be two finite sets having m and n elements respectively. Then each element of set X can be associated to any one of n elements of set Y. So, total number of functions from set X to set Yis n^{m}.
(4) Value of the function: If $y=f(x)$ is a function then to find its values at some value of x, say $x=a$, we directly substitute $x=a$ in its given rule $f(x)$ and it is denoted by $f(a)$.
e.g. If $f(x)=x^{2}+1$, then $f(1)=1^{2}+1=2, f(2)=2^{2}+1=5, f(0)=0^{2}+1=1$ etc.

