Domain, Co-domain and Range of Function.

If a function f is defined from a set of A to set B then for $f: A \rightarrow B$ set A is called the domain of function f and set B is called the co-domain of function f. The set of all f-images of the elements of A is called the range of function f.

In other words, we can say Domain $=$ All possible values of x for which $f(x)$ exists.
Range $=$ For all values of x, all possible values of $f(x)$.

(1) Methods for finding domain and range of function

(i) Domain

(a) Expression under even root (i.e., square root, fourth root etc.) ≥ 0
(b) Denominator $\neq 0$.
(c) If domain of $y=f(x)$ and $y=g(x)$ are D_{1} and D_{2} respectively then the domain of $f(x) \pm g(x)$ or $f(x) . g(x)$ is $D_{1} \cap D_{2}$.
(d) While domain of $\frac{f(x)}{g(x)}$ is $D_{1} \cap D_{2}-\{g(x)=0\}$.
(e) Domain of $(\sqrt{f(x)})=D_{1} \cap\{x: f(x) \geq 0\}$
(ii) Range:Range of $y=f(x)$ is collection of all outputs $f(x)$ corresponding to each real number in the domain.
(a) If domain \in finite number of points \Rightarrow range \in set of corresponding $f(x)$ values.
(b) If domain $\in R$ or R-[some finite points]. Then express x in terms of y. From this find y for x to be defined (i.e., find the values of y for which x exists).
(c) If domain \in a finite interval, find the least and greatest value for range using monotonicity.

Important Tips

- If $f(x)$ is a given function of x and if a is in its domain of definition, then by $f(a)$ it means the number obtained by replacing x by a in $f(x)$ or the value assumed by $f(x)$ when $x=a$.

Range is always a subset of co-domain.

