Domain, Co-domain and Range of Function.

If a function *f* is defined from a set of *A* to set *B* then for $f: A \rightarrow B$ set *A* is called the domain of function *f* and set *B* is called the co-domain of function *f*. The set of all *f*-images of the elements of *A* is called the range of function *f*.

In other words, we can say Domain = All possible values of x for which f(x) exists.

Range = For all values of x_i all possible values of f(x).

(1) Methods for finding domain and range of function

- (i) Domain
- (a) Expression under even root (*i.e.*, square root, fourth root etc.) ≥ 0
- (b) Denominator $\neq 0$.
- (c) If domain of y = f(x) and y = g(x) are D_1 and D_2 respectively then the domain of
- $f(x) \pm g(x)$ or f(x).g(x) is $D_1 \cap D_2$.
- (d) While domain of $\frac{f(x)}{g(x)}$ is $D_1 \cap D_2 \{g(x) = 0\}$.

(e) Domain of
$$\left(\sqrt{f(x)}\right) = D_1 \cap \{x : f(x) \ge 0\}$$

(ii) **Range:**Range of y = f(x) is collection of all outputs f(x) corresponding to each real number in the domain.

(a) If domain \in finite number of points \Rightarrow range \in set of corresponding f(x) values.

(b) If domain $\in R$ or R – [some finite points]. Then express x in terms of y. From this find y for x to be defined (*i.e.*, find the values of y for which x exists).

(c) If domain \in a finite interval, find the least and greatest value for range using monotonicity.

Important Tips

The function of x and if a is in its domain of definition, then by f(a) it means the number obtained by replacing x by a in f(x) or the value assumed by f(x) when x = a.

• Range is always a subset of co-domain.