Algebra of Functions.

Let $f(x)$ and $g(x)$ be two real and single-valued functions, with domains X_{f}, X_{g} and ranges Y_{f} and Y_{g} respectively. Let $X=X_{f} \cap X_{g} \neq \phi$. Then, the following operations are defined.
(1) Scalar multiplication of a function: $(c f)(x)=c f(x)$, where c is a scalar. The new function c $f(x)$ has the domain X_{f}.
(2) Addition/subtraction of functions: $(f \pm g)(x)=f(x) \pm g(x)$. The new function has the domain X.
(3) Multiplication of functions: $(f g)(x)=(g f)(x)=f(x) g(x)$. The product function has the domain X.
(4) Division of functions:
(i) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$. The new function has the domain X, except for the values of x for which $g(x)=0$.
(ii) $\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}$. The new function has the domain X, except for the values of x for which $f(x)=0$.
(5) Equal functions:Two function f and g are said to be equal functions, if and only if
(i) Domain of $f=$ domain of g
(ii)Co-domain of $f=$ co-domain of g
(iii) $f(x)=g(x) \forall x \in$ their common domain
(6) Real valued function:If R, be the set of real numbers and A, B are subsets of R, then the function $f: A \rightarrow B$ is called a real function or real -valued function.

