Periodic Function.

A function is said to be periodic function if its each value is repeated after a definite interval. So a function f(x) will be periodic if a positive real number T exist such that, f(x + T) = f(x), $\forall x \in$ domain. Here the least positive value of T is called the period of the function. Clearly $f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = \dots$. *E.g.* sin x, cos x, tan x are periodic functions with period 2π , 2π and π respectively.

Functions	Periods
(1) $\sin^n x$, $\cos^n x$, $\sec^n x$, $\csc^n x$	$\pi; \text{if } n \text{ is even} \begin{cases} \\ 2\pi; \text{ if } n \text{ is odd} \text{ or fraction} \end{cases}$
(2) $\tan^n x$, $\cot^n x$	$\pi; n$ is even or odd.
(3) $\frac{ \sin x , \cos x , \tan x ,}{ \cot x , \sec x , \csc x }$	π
(4) $x - [x]$	1
(5) Algebraic functions e.g., $\sqrt{x}, x^2, x^3 + 5,$ etc	Period does not exist

Some standard results on periodic functions

Important Tips

- *☞* If f(x) is periodic with period T, then c.f(x) is periodic with period T, f(x + c) is periodic with period T and $f(x) \pm c$ is periodic with period T. where c is any constant.
- The function f(x) has a period T, then the function f(ax+b) will have a period $\frac{T}{|a|}$.
- The If f(x) is periodic with period T then $\frac{1}{f(x)}$ is also periodic with same period T.
- \checkmark If f(x) is periodic with period T, $\sqrt{f(x)}$ is also periodic with same period T.
- *☞* If f(x) is periodic with period T, then a f(x) + b, where $a, b \in R(a \neq 0)$ is also a periodic function with periodT.

 $\ \ \,$ If $f_1(x)$, $f_2(x)$, $f_3(x)$ are periodic functions with periods T_1 , T_2 , T_3 respectively then; we have $h(x) = af_1(x) \pm bf_2(x) \pm cf_3(x)$, has period as,

 $= \begin{cases} \text{L.C.M.of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is not an even function} \\ \frac{1}{2} \text{L.C.M. of} \{T_1, T_2, T_3\}; & \text{if } h(x) \text{ is an even function} \end{cases}$