Periodic Function.

A function is said to be periodic function if its each value is repeated after a definite interval. So a function $f(x)$ will be periodic if a positive real number T exist such that, $f(x+T)=f(x), \forall x \in$ domain. Here the least positive value of T is called the period of the function. Clearly $f(x)=f(x+T)=f(x+2 T)=f(x+3 T)=\ldots .$. . E.g. $\sin x, \cos x, \tan x$ are periodic functions with period $2 \pi, 2 \pi$ and π respectively.

Some standard results on periodic functions

Functions	Periods
(1) $\sin ^{n} x, \cos ^{n} x, \sec ^{n} x, \operatorname{cosec}^{n} x$	
(2) $\tan ^{n} x, \cot ^{n} x$	$\pi ; n$ is even or odd.
(3) $\|\sin x\|,\|\cos x\|,\|\tan x\|$, $\|\cot x\|,\|\sec x\|,\|\operatorname{cosec} x\|$	π
(4) $x-[x]$	1
(5) Algebraic functions e.g., $\sqrt{x}, x^{2}, x^{3}+5, \ldots .$. etc	Period does not exist

Important Tips

\rightarrow If $f(x)$ is periodic with period T, then $c . f(x)$ is periodic with period $T, f(x+c)$ is periodic with period T and $f(x) \pm c$ is periodic with period T. where c is any constant.

ه If a function $f(x)$ has a period T, then the function $f(a x+b)$ will have a period $\frac{T}{|a|}$.
ه- If $f(x)$ is periodic with period T then $\frac{1}{f(x)}$ is also periodic with same period T.

- If $f(x)$ is periodic with period $T, \sqrt{f(x)}$ is also periodic with same period T.
- If $f(x)$ is periodic with period T, then a $f(x)+b$, where $a, b \in R(a \neq 0)$ is also a periodic function with periodT.
- If $f_{1}(x), f_{2}(x), f_{3}(x)$ are periodic functions with periods T_{1}, T_{2}, T_{3} respectively then; we have $h(x)=a f_{1}(x) \pm b f_{2}(x) \pm c f_{3}(x)$, has period as,
$=\left\{\begin{array}{l}\text { L.C.M.of }\left\{T_{1}, T_{2}, T_{3}\right\} ; \text { if } h(x) \text { is not an even function } \\ \frac{1}{2} \text { L.C.M. of }\left\{T_{1}, T_{2}, T_{3}\right\} ; \text { if } h(x) \text { is an even function }\end{array}\right.$

