Composite Function.

If $f: A \to B$ and $g: B \to C$ are two function then the composite function of f and g, gof $A \to C$ will be defined as $gof(x) = g[f(x)], \forall x \in A$

(1) **Properties of composition of function:**

(i) *f* is even, *g* is even \Rightarrow *fog* even function.

(ii) *f* is odd, *g* is odd \Rightarrow *fog* is odd function.

(iii) *f* is even, *g* is odd \Rightarrow *fog* is even function.

(iv) *f* is odd, *g* is even \Rightarrow *fog* is even function.

(v) Composite of functions is not commutative *i.e.* $fog \neq gof$

(vi) Composite of functions is associative i.e.(fog)oh = fo(goh)

(vii) If $f: A \to B$ is bijection and $g: B \to A$ is inverse of f. Then $fog = I_B$ and $gof = I_A$.

Where, I_A and I_B are identity functions on the sets A and B respectively.

(viii)If $f: A \to B$ and $g: B \to C$ are two bijections, then $gof: A \to C$ is bijection and $(gof)^{-1} = (f^{-1}og^{-1})$.

(ix) $fog \neq gof$ but if, fog = gof then either $f^{-1} = g$ or $g^{-1} = f$ also, (fog)(x) = (gof)(x) = (x).

Important Tips

- ☞ gof(x) is simply the g-image of f(x), where f(x) is f-image of elements $x \in A$.
- *Function gof will exist only when range of f is the subset of domain of g.*
- *fog does not exist if range of g is not a subset of domain of f.*
- *fog and gof may not be always defined.*
- If both f and g are one-one, then fog and gof are also one-one.
- *The set of the set of*