Composite Function.

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two function then the composite function of f and g, gof $A \rightarrow C$ will be defined as $g o f(x)=g[f(x)], \forall x \in A$
(1) Properties of composition of function:
(i) f is even, g is even $\Rightarrow f o g$ even function.
(ii) f is odd, g is odd $\Rightarrow f o g$ is odd function.
(iii) f is even, g is odd $\Rightarrow f o g$ is even function.
(iv) f is odd, g is even $\Rightarrow f o g$ is even function.
(v) Composite of functions is not commutative i.e. $\operatorname{fog} \neq \mathrm{gof}$
(vi) Composite of functions is associative i.e.(fog)oh $=f o(g o h)$
(vii) If $f: A \rightarrow B$ is bijection and $g: B \rightarrow A$ is inverse of f. Then $f \circ g=I_{B}$ and $g o f=I_{A}$. Where, I_{A} and I_{B} are identity functions on the sets A and B respectively.
(viii)If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two bijections, then gof : $A \rightarrow C$ is bijection and $(g \circ f)^{-1}=\left(f^{-1} o g^{-1}\right)$.
(ix) $f \circ g \neq g o f$ but if, $f o g=g o f$ then either $f^{-1}=g$ or $g^{-1}=f$ also, $(f \circ g)(x)=(g \circ f)(x)=(x)$.

Important Tips

($g \circ f(x)$ is simply the g-image of $f(x)$, where $f(x)$ is f-image of elements $x \in A$.

- Function gof will exist only when range of f is the subset of domain of g.
- fog does not exist if range of g is not a subset of domain of f.
- fog and gof may not be always defined.
- If both f and g are one-one, then fog and gof are also one-one.
\rightarrow If both f and g are onto, then gof is onto.

