Limit of a Function.

Let $y=f(x)$ be a function of x . If at $x=a, f(x)$ takes indeterminate form, then we consider the values of the function which are very near to ' a '. If these values tend to a definite unique number as x tends to ' a ', then the unique number so obtained is called the limit of $f(x)$ at $x=a$ and we write it as $\lim _{x \rightarrow a} f(x)$.
(1) Meaning of ' $\mathbf{x} \rightarrow \mathbf{a}$ ': Let x be a variable and a be the constant. If x assumes values nearer and nearer to ' a ' then we say ' x tends to a^{\prime} and we write' $x \rightarrow a$ '. It should be noted that as $x \rightarrow a$, we have $x \neq a$. By ' x tends to a ' we mean that
(i) $x \neq a$
(ii) x assumes values nearer and nearer to ' a ' and
(iii) We are not specifying any manner in which x should approach to ' a '. x may approach to a from left or right as shown i

(2) Left hand and right hand limit:Consider the values of the functions at the points which are very near to a on the left of a. If these values tend to a definite unique number as x tends to a, then the unique number so obtained is called left-hand limit of $f(x)$ at $\mathrm{x}=\mathrm{a}$ and symbolically we write it as $f(a-0)=\lim _{x \rightarrow a^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)$
Similarly we can define right-hand limit of $f(x)$ at $x=a$ which is expressed as $f(a+0)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)$.
(3) Method for finding L.H.L. and R.H.L.
(i) For finding right hand limit (R.H.L.) of the function, we write $x+h$ in place of x, while for left hand limit (L.H.L.) we write $x-h$ in place of x.
(ii) Then we replace x by 'a' in the function so obtained.
(iii) Lastly we find limit $h \rightarrow 0$.
(4) Existence of limit: $\lim _{x \rightarrow a} f(x)$ exists when,
(i) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist i.e. L.H.L. and R.H.L. both exists.
(ii) $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ i.e. L.H.L. $=$ R.H.L.

Note: If a function $f(x)$ takes the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at $x=a$, then we say that $f(x)$ is indeterminate or meaningless at $x=a$. Other indeterminate forms are $\infty-\infty, \infty \times \infty, 0 \times \infty, 1^{\infty}, 0^{0}, \infty^{0}$

In short, we write L.H.L. for left hand limit and R.H.L. for right hand limit.
It is not necessary that if the value of a function at some point exists then its limit at that point must exist.
(5) Sandwich theorem: If $f(x), g(x)$ and $h(x)$ are any three functions such that,
$f(x) \leq g(x) \leq h(x) \forall x \in$ neighborhood of $x=a$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=l($ say $)$, then $\lim _{x \rightarrow a} g(x)=l$.
This theorem is normally applied when the $\lim _{x \rightarrow a} g(x)$ can't be obtained by using conventional methods as function $f(x)$ and $h(x)$ can be easily found.

