Derivative at a Point.

The derivative of a function at a point $x=a$ is defined by $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ (provided the limit exists and is finite)

The above definition of derivative is also called derivative by first principle.
(1) Geometrical meaning of derivatives at a point: Consider the curve $y=f(x)$. Let $f(x)$ be differentiable at $x=c$. Let $P(c, f(c))$ be a point on the curve and $Q(x, f(x))$ be a neighboring point on the curve. Then,
Slope of the chord $P Q=\frac{f(x)-f(c)}{x-c}$. Taking limit as $Q \rightarrow P$, i.e. $x \rightarrow c$,
We get $\lim _{Q \rightarrow P}$ (slope of the chord $\left.P Q\right)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$
As $Q \rightarrow P$, chord $P Q$ becomes tangent at P.
Therefore from (i), we have
Slope of the tangent at $P=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\left(\frac{d f(x)}{d x}\right)_{x=c}$.

Note: Thus, the derivatives of a function at a point $x=c$ is the slope of the tangent to curve, $y=f(x)$ at point $(c, f(c))$.
(2) Physical interpretation at a point:Let a particle moves in a straight line $O X$ starting from O towards X. Clearly, the position of the particle at any instant would depend upon the time elapsed. In other words, the distance of the particle from O will be some function f of time t.

Let at any time $t=t_{0}$, the particle be at P and after a further time h, it is at Q so that $O P=f\left(t_{0}\right)$ and $O Q=f\left(t_{0}+h\right)$. Hence, the average speed of the particle during the journey from P to Q is $\frac{P Q}{h}$, i.e., $\frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}=f\left(t_{0}, h\right)$. Taking the limit of $f\left(t_{0}, h\right)$ as $h \rightarrow 0$, we get its instantaneous speed to be $\lim _{h \rightarrow 0} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}$, which is simply $f^{\prime}\left(t_{0}\right)$. Thus, if $f(t)$ gives the distance of a moving particle at time t, then the derivative of f at $t=t_{0}$ represents the instantaneous speed of the particle at the point P, i.e., at time $t=t_{0}$.

Important Tips

$\frac{d y}{d x}$ is $\frac{d}{d x}(y)$ in which $\frac{d}{d x}$ is simply a symbol of operation and not 'd' divided by $d x$.

- If $f^{\prime}\left(x_{0}\right)=\infty$, the function is said to have an infinite derivative at the point x_{0}. In this case the line tangent to the curve of $y=f(x)$ at the point x_{0} is perpendicular to the x-axis

