## Theorems for Differentiation.

Let $f(x), g(x)$ and $u(x)$ be differentiable functions
(1) If at all points of a certain interval. $f^{\prime}(x)=0$, Then the function $f(x)$ has a constant value within this interval.

## (2) Chain rule

(i) Case I:If $y$ is a function of $u$ and $u$ is a function of $x$, then derivative of $y$ with respect to $x$ is $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$ or $y=f(u) \Rightarrow \frac{d y}{d x}=f^{\prime}(u) \frac{d u}{d x}$
(ii) Case II:If $y$ and $x$ both are expressed in terms of $t, y$ and $x$ both are differentiable with respect to $t$ then $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$.
(3) Sum and difference rule:Using linear property $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))$
(4) Product rule:(i) $\frac{d}{d x}(f(x) g(x))=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x)$ (ii)

$$
\frac{d}{d x}(u . v . w .)=u \cdot v \cdot \frac{d w}{d x}+v \cdot w \cdot \frac{d u}{d x}+u \cdot w \cdot \frac{d v}{d x}
$$

(5) Scalar multiple rule: $\frac{d}{d x}(k f(x))=k \frac{d}{d x} f(x)$
(6) Quotient rule: $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \frac{d}{d x}(f(x))-f(x) \frac{d}{d x}(g(x))}{(g(x))^{2}}$, provided $g(x) \neq 0$

