## Methods of Differentiation.

(1) Differentiation of implicit functions:If $y$ is expressed entirely in terms of $x$, then we say that $y$ is an explicit function of $x$. For example $y=\sin x, y=\mathrm{e}^{\mathrm{x}}, y=x^{2}+x+1$ etc. If $y$ is related to $x$ but cannot be conveniently expressed in the form of $y=f(x)$ but can be expressed in the form $f(x, y)=0$, then we say that $y$ is an implicit function of $x$.
(i) Working rule 1: (a) Differentiate each term of $f(x, y)=0$ with respect to $x$.
(b) Collect the terms containing $d y / d x$ on one side and the terms not involving $d y / d x$ on the other side.
(c) Express $d y / d x$ as a function of $x$ or $y$ or both.

Note: In case of implicit differentiation, $d y / d x$ may contain both $x$ and $y$.
(ii)Working rule 2: If $f(x, y)=$ constant, then $\frac{d y}{d x}=-\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$

Where $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ are partial differential coefficients of $f(x, y)$ with respect to $x$ and $y$ respectively.

Note: Partial differential coefficient of $f(x, y)$ with respect to x means the ordinary differential coefficient of $f(x, y)$ with respect to x keeping y constant.
(3) Differentiation of parametric functions:Sometimes $x$ and $y$ are given as functions of a single variable, e.g., $x=\phi(t), y=\psi(t)$ are two functions and $t$ is a variable. In such a case $x$ and $y$ are called parametric functions or parametric equations and $t$ is called the parameter. To find $\frac{d y}{d x}$ in case of parametric functions, we first obtain the relationship between $x$ and $y$ by eliminating the parameter $t$ and then we differentiate it with respect to $x$. But every time it is not convenient to eliminate the parameter.

Therefore $\frac{d y}{d x}$ can also be obtained by the following formula

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

To prove it, let $\Delta x$ and $\Delta y$ be the changes in $x$ and $y$ respectively corresponding to a small change $\Delta t$ in $t$.

Since $\frac{\Delta y}{\Delta x}=\frac{\Delta y / \Delta t}{\Delta x / \Delta t}, \quad \therefore \frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t}}{\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\Psi^{\prime}(t)}{\phi^{\prime}(t)}$
(4) Differentiation of infinite series:If $y$ is given in the form of infinite series of $x$ and we have to find out $\frac{d y}{d x}$ then we remove one or more terms, it does not affect the series
(i) If $y=\sqrt{f(x)+\sqrt{f(x)+\sqrt{f(x)+\ldots \ldots . . \infty}}}$, then $y=\sqrt{f(x)+y} \Rightarrow y^{2}=f(x)+y$
$2 y \frac{d y}{d x}=f^{\prime}(x)+\frac{d y}{d x}, \quad \therefore \frac{d y}{d x}=\frac{f^{\prime}(x)}{2 y-1}$
(ii) If $y=f(x)^{f(x)^{f(x)^{(x) \ldots \infty}}}$ then $y=f(x)^{y}$
$\therefore \log y=y \log f(x)$
$\frac{1}{y} \frac{d y}{d x}=\frac{y \cdot f^{\prime}(x)}{f(x)}+\log f(x) \cdot \frac{d y}{d x}, \quad \therefore \frac{d y}{d x}=\frac{y^{2} f^{\prime}(x)}{f(x)[1-y \log f(x)]}$
(iii) If $y=f(x)+\frac{1}{f(x)+\frac{1}{f(x)+\ldots . \infty}}$ then $\frac{d y}{d x}=\frac{y f^{\prime}(x)}{2 y-f(x)}$
(5) Differentiation of composite function:Suppose function is given in form of $f \circ g(x)$ or $f[g(x)]$
Working rule: Differentiate applying chain rule $\frac{d}{d x} f[g(x)]=f^{\prime}[g(x)] \cdot g^{\prime}(x)$

