Methods of Differentiation

(1) Differentiation of implicit functions:If ) is expressed entirely in terms of x, then we say that
yis an explicit function of x. For example y=sin x, y = €, y= ¥ + x+ 1 etc. If yis related to x
but cannot be conveniently expressed in the form of y = f(x) but can be expressed in the form

f(x,y)=0, then we say that yis an implicit function of x.

(i) Working rule 1: (a) Differentiate each term of f(x,y)=0 with respect to x.

(b) Collect the terms containing dy / dx on one side and the terms not involving dy/dx on the

other side.

(c) Express dy/dx as a function of xor yor both.

Note: In case of implicit differentiation, dy/dx may contain both xand y.
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Wherea— and - are partial differential coefficients of f(x,y) with respect to xand y
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respectively.

Note: Partial differential coefficient of f(x,y) with respect to x means the ordinary differential coefficient

of f(x,y) with respect to x keeping y constant.

(3) Differentiation of parametric functions:Sometimes xand y are given as functions of a
single variable, e.g, x = §?),y =y () are two functions and tis a variable. In such a case xand y
are called parametric functions or parametric equations and ¢is called the parameter. To find
@ in case of parametric functions, we first obtain the relationship between xand y by

X
eliminating the parameter ¢and then we differentiate it with respect to x. But every time it is not

convenient to eliminate the parameter.
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Therefore . can also be obtained by the following formula
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To prove it, let Ax and Ay be the changes in xand yrespectively corresponding to a small

change Arin ¢
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(4) Differentiation of infinite series:If yis given in the form of infinite series of xand we have

to find out @ then we remove one or more terms, it does not affect the series
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. logy = ylog f(x)
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(i) If y = f(x)+ 1 then 1 —2y g
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(5) Differentiation of composite function:Suppose function is given in form of fog(x) or

fle(x)]

Working rule: Differentiate applying chain rule dif[g(x)] = flg(x)].g'(x)
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