Successive Differentiation or Higher Order Derivatives.

(1) **Definition and notation:** If *y* is a function of *x* and is differentiable with respect to *x*, then its derivative $\frac{dy}{dx}$ can be found which is known as derivative of first order. If the first derivative $\frac{dy}{dx}$ is also a differentiable. Function, then it can be further differentiated with respect to *x* and this derivative is denoted by $\frac{d^2y}{dx^2}$ which is called the second derivative of *y* with respect to *x* further if $\frac{d^2y}{dx^2}$ is also differentiable then its derivative is called third derivative of *y* which is denoted by $\frac{d^3y}{dx^3}$. Similarly *n*th derivative of *y* is denoted by $\frac{d^n y}{dx^n}$. All these derivatives are called as successive derivative and this process is known as successive differentiation. We also use the following symbols for the successive derivatives of y = f(x):

If y = f(x), then the value of the nth order derivative at x = a is usually denoted by

$$\left(\frac{d^n y}{dx^n}\right)_{x=a} \operatorname{or}(y_n)_{x=a} \operatorname{or}(y^n)_{x=a} \operatorname{or} f^n(a)$$

(2) n^{th} Derivatives of some standard functions:

(i) (a)
$$\frac{d^{n}}{dx^{n}}\sin(ax+b) = a^{n}\sin\left(\frac{n\pi}{2} + ax + b\right)$$
 (b)
$$\frac{d^{n}}{dx^{n}}\cos(ax+b) = a^{n}\cos\left(\frac{n\pi}{2} + ax + b\right)$$

(ii)
$$\frac{d^{n}}{dx^{n}}(ax+b)^{m} = \frac{m!}{(m-n)!}a^{n}(ax+b)^{m-n}, \text{ Where } m > n$$

Particular cases:

(i)(a) When m = n

(ii) When a = 1, b = 0, then $y = x^n$

$$D^{n} \{ (ax + b)^{n} \} = a^{n} . n! \qquad \qquad \therefore$$

$$D^{n} (x^{m}) = m(m-1)(m-n+1) x^{m-n} = \frac{m!}{(m-n)!} x^{m-n}$$

(b) When
$$m < n, D^n \{(ax + b)^m\} = 0$$

(iii) When $a = 1, b = 0$ and $m = n$,
(iv)When $m = -1, y = \frac{1}{(ax + b)}$

Then
$$y = x^n$$

$$D^{n}(y) = a^{n}(-1)(-2)(-3)...(-n)(ax + b)^{-1-n}$$

$$\therefore D^{n}(x^{n}) = n!$$

$$= a^{n}(-1)^{n}(1.2.3...n)(ax + b)^{-1-n} = \frac{a^{n}(-1)^{n}n!}{(ax + b)^{n+1}}$$

(3)
$$\frac{d^n}{dx^n}\log(ax+b) = \frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n}$$

(4)
$$\frac{d^{n}}{dx^{n}}(e^{ax}) = a^{n}e^{ax}$$

(5) $\frac{d^{n}(a^{x})}{dx^{n}} = a^{x}(\log a)^{n}$
(6) (i) $\frac{d^{n}}{dx^{n}}e^{ax}\sin(bx+c) = r^{n}e^{ax}\sin(bx+c+n\phi)$
Where $r = \sqrt{a^{2} + b^{2}}$; $\phi = \tan^{-1}\frac{b}{a}$, $y = e^{ax}\sin(bx+c)$
(ii) $\frac{d^{n}}{dx^{n}}e^{ax}\cos(bx+c) = r^{n}e^{ax}\cos(bx+c+n\phi)$