Successive Differentiation or Higher Order Derivatives.

(1) Definition and notation:If y is a function of x and is differentiable with respect to x, then its derivative $\frac{d y}{d x}$ can be found which is known as derivative of first order. If the first derivative $\frac{d y}{d x}$ is also a differentiable. Function, then it can be further differentiated with respect to x and this derivative is denoted by $d^{2} y / d x^{2}$ which is called the second derivative of y with respect to x further if $\frac{d^{2} y}{d x^{2}}$ is also differentiable then its derivative is called third derivative of y which is denoted by $\frac{d^{3} y}{d x^{3}}$. Similarly $n^{\text {th }}$ derivative of y is denoted by $\frac{d^{n} y}{d x^{n}}$. All these derivatives are called as successive derivative and this process is known as successive differentiation. We also use the following symbols for the successive derivatives of $y=f(x)$:
$y_{1}, y_{2}, y_{3}, \ldots \ldots \ldots ., y_{n}, \ldots \ldots$.
$D y, \quad D^{2} y, \quad D^{3} y \ldots \ldots \ldots, D^{n} y, \ldots \ldots . \quad\left(\right.$ Where $\left.D=\frac{d}{d x}\right) \quad \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \ldots \ldots . . \frac{d^{n} y}{d x^{n}}, \ldots \ldots \ldots .$.
$f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x), \ldots \ldots . . ., f^{n}(x), \ldots \ldots$.
If $y=f(x)$, then the value of the $n^{\text {th }}$ order derivative at $x=a$ is usually denoted by $\left(\frac{d^{n} y}{d x^{n}}\right)_{x=a} \operatorname{or}\left(y_{n}\right)_{x=a} \operatorname{or}\left(y^{n}\right)_{x=a} \operatorname{or} f^{n}(a)$
(2) $n^{\text {th }}$ Derivatives of some standard functions:
(i) (a) $\frac{d^{n}}{d x^{n}} \sin (a x+b)=a^{n} \sin \left(\frac{n \pi}{2}+a x+b\right)$
(b)
$\frac{d^{n}}{d x^{n}} \cos (a x+b)=a^{n} \cos \left(\frac{n \pi}{2}+a x+b\right)$
(ii) $\frac{d^{n}}{d x^{n}}(a x+b)^{m}=\frac{m!}{(m-n)!} a^{n}(a x+b)^{m-n}$, Where $m>n$

Particular cases:

(i)(a) When $m=n$
(ii) When $a=1, b=0$, then $y=x^{n}$

$$
D^{n}\left\{(a x+b)^{n}\right\}=a^{n} . n!
$$

$D^{n}\left(x^{m}\right)=m(m-1) \ldots \ldots . .(m-n+1) x^{m-n}=\frac{m!}{(m-n)!} x^{m-n}$
(b) When $m<n, D^{n}\left\{(a x+b)^{m}\right\}=0$
(iii) When $a=1, b=0$ and $m=n$,
(iv)When $m=-1, y=\frac{1}{(a x+b)}$

Then $y=x^{n}$
$D^{n}(y)=a^{n}(-1)(-2)(-3) \ldots \ldots \ldots .(-n)(a x+b)^{-1-n}$
$\therefore D^{n}\left(x^{n}\right)=n!$
$=a^{n}(-1)^{n}(1.2 .3 \ldots \ldots . . n)(a x+b)^{-1-n}=\frac{a^{n}(-1)^{n} n!}{(a x+b)^{n+1}}$
(3) $\frac{d^{n}}{d x^{n}} \log (a x+b)=\frac{(-1)^{n-1}(n-1)!a^{n}}{(a x+b)^{n}}$
(4) $\frac{d^{n}}{d x^{n}}\left(e^{a x}\right)=a^{n} e^{a x}$
(5) $\frac{d^{n}\left(a^{x}\right)}{d x^{n}}=a^{x}(\log a)^{n}$
(6) (i) $\frac{d^{n}}{d x^{n}} e^{a x} \sin (b x+c)=r^{n} e^{a x} \sin (b x+c+n \phi)$

Where $r=\sqrt{a^{2}+b^{2}} ; \phi=\tan ^{-1} \frac{b}{a}, y=e^{a x} \sin (b x+c)$
(ii) $\frac{d^{n}}{d x^{n}} e^{a x} \cos (b x+c)=r^{n} e^{a x} \cos (b x+c+n \phi)$

