Differentiation of Determinants.

Let $\Delta(x)=\left|\begin{array}{ll}a_{1}(x) & b_{1}(x) \\ a_{2}(x) & b_{2}(x)\end{array}\right|$.Then $\Delta^{\prime}(x)=\left|\begin{array}{ll}a_{1}^{\prime}(x) & b_{1}^{\prime}(x) \\ a_{2}(x) & b_{2}(x)\end{array}\right|+\left|\begin{array}{ll}a_{1}(x) & b_{1}(x) \\ a_{2}^{\prime}(x) & b_{2}^{\prime}(x)\end{array}\right|$
If we write $\Delta(x)=\left|C_{1} C_{2} C_{3}\right|$. Then $\Delta^{\prime}(x) \neq C_{1}^{\prime} C_{2} C_{3}\left|+\left|C_{1} C_{2}^{\prime} C_{3}\right|+\left|C_{1} C_{2} C_{3}^{\prime}\right|\right.$
Similarly, if $\Delta(x)=\left|\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right|$, then $\Delta^{\prime}(x)=\left|\begin{array}{l}R_{1}^{\prime} \\ R_{2} \\ R_{3}\end{array}\right|+\left|\begin{array}{l}R_{1} \\ R_{2}^{\prime} \\ R_{3}\end{array}\right|+\left|\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}^{\prime}\end{array}\right|$
Thus, to differentiate a determinant, we differentiate one row (or column) at a time, keeping others unchanged.

