Definition.

Let $\phi(x)$ be the primitive or anti-derivative of a function $\mathrm{f}(\mathrm{x})$ defined on $[\mathrm{a}, \mathrm{b}]$ i.e., $\frac{d}{d x}[\phi(x)]=f(x)$.
Then the definite integral of $\mathrm{f}(\mathrm{x})$ over $[\mathrm{a}, \mathrm{b}]$ is denoted by $\int_{a}^{b} f(x) d x$ and is defined as $[\phi(b)-\phi(a)]$ i.e., $\int_{a}^{b} f(x) d x=\phi(b)-\phi(a)$. This is also called Newton Leibnitz formula.

The numbers a and b are called the limits of integration, ' a ' is called the lower limit and ' b ' the upper limit. The interval $[a, b]$ is called the interval of integration. The interval $[a, b]$ is also known as range of integration.

Important Tips

T In the above definition it does not matter which anti-derivative is used to evaluate the definite integral, because if $\int f(x) d x=\phi(x)+c$, then
$\int_{a}^{b} f(x) d x=[\phi(x)+c]_{a}^{b}=(\phi(b)+c)-(\phi(a)+c)=\phi(b)-\phi(a)$.
In other words, to evaluate the definite integral there is no need to keep the constant of integration.

- Every definite integral has a unique value.

