
Properties of Definite Integral. 
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Generally this property is used when the integrand has two or more rules in the integration 
interval. 
 
 
Important Tips 
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Note:  Property (3) is useful when )(xf  is not continuous in [a, b] because we can break up the integral 

into several integrals at the points of discontinuity so that the function is continuous in the sub-intervals. 
The expression for )(xf  changes at the end points of each of the sub-interval. You might at times be 

puzzled about the end points as limits of integration. You may not be sure for x = 0 as the limit of the first 
integral or the next one. In fact, it is immaterial, as the area of the line is always zero. Therefore, even if 

you write ,)21(
0

1
dxx  whereas 0 is not included in its domain it is deemed to be understood that you 

are approaching x = 0 from the left in the first integral and from right in the second integral. Similarly for x 
= 1. 
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)()(  : This property can be used only when lower limit is zero. It is 

generally used for those complicated integrals whose denominators are unchanged when x is 
replaced by (a – x). 
Following integrals can be obtained with the help of above property. 
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This property is generally used when integrand is either even or odd function of x. 
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It is generally used to make half the upper limit. 
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Deduction: If )(xf  is a periodic function with period T and  Ra , then  
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Important Tips 
 
 Every continuous function defined on [a, b] is integrable over [a, b]. 
 Every monotonic function defined on [a, b] is integrable over [a, b]. 
 If f(x) is a continuous function defined on [a, b], then there exists ),( bac   such that 

 
b

a
abcfdxxf )).(()( . 

The number 


b

a
dxxf

ab
cf )(

)(

1
)(  is called the mean value of the function )(xf  on the interval 

[a, b]. 

 If f is continuous on [a, b], then the integral function g defined by g(x) = 
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is derivable on [a, b] and )()( xfxg   for all ],[ bax  . 

 If m and M are the smallest and greatest values of a function f(x) on an interval [a, b], then 
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 If the function )(x  and ),(x  are defined on [a, b] and differentiable at a point ),( bax  and 
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 If )(2 xf  and )(2 xg  are integrable on [a, b], then  
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 Change of variables: If the function f(x) is continuous on [a, b] and the function )(tx   is 

continuously differentiable on the interval ],[ 21 tt  and ),(),( 21 tbta  then 

  
b

a

t

t
dtttfdxxf

2

1

)('))(()( . 

 Let a function ),( xf  be continuous for bxa  and dc   . Then for any ],[ dc , if 
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Where )(' I  is the derivative of )(I  w.r.t.  and ),(' xf  is the derivative of ),( xf  w.r.t. , 

keeping x constant. 
 For a given function )(xf  continuous on [a, b] if you are able to find two continuous 

function )(1 xf  and )(2 xf  on [a, b] such that ],,[)()()( 21 baxxfxfxf   then  
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