1. Summation of Series by Integration.

We know that $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=1}^{n} f(a+r h)$, where $n h=b-a$
Now, put $\mathrm{a}=0, \mathrm{~b}=1, \therefore n h=1$ or $h=\frac{1}{n}$. Hence $\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum f\left(\frac{r}{n}\right)$

Note: Express the given series in the form $\sum \frac{1}{n} f\left(\frac{r}{h}\right)$. Replace $\frac{r}{n}$ by $\mathrm{x}, \frac{1}{n}$ by dx and the limit of the sum is $\int_{0}^{1} f(x) d x$.

