1. Summation of Series by Integration.

We know that
$$\int_a^b f(x)dx = \lim_{n \to \infty} h \sum_{r=1}^n f(a+rh)$$
, where $nh = b-a$

Now, put
$$a = 0$$
, $b = 1$, $\therefore nh = 1$ or $h = \frac{1}{n}$. Hence $\int_0^1 f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum f\left(\frac{r}{n}\right)$

Note: Express the given series in the form $\sum \frac{1}{n} f\left(\frac{r}{h}\right)$. Replace $\frac{r}{n}$ by x, $\frac{1}{n}$ by dx and the limit of the sum is $\int_0^1 f(x) dx$.