Gamma Function.

If m and n are non-negative integers, then $\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x=\frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2 \Gamma\left(\frac{m+n+2}{2}\right)}$
Where $\Gamma(n)$ is called gamma function which satisfied the following properties

$$
\Gamma(n+1)=n \Gamma(n)=n!\quad \text { i.e. } \quad \Gamma(1)=1 \text { and } \Gamma(1 / 2)=\sqrt{\pi}
$$

In place of gamma function, we can also use the following formula :

$$
\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x=\frac{(m-1)(m-3) \ldots . .(2 \text { or } 1)(n-1)(n-3) \ldots . .(2 \text { or } 1)}{(m+n)(m+n-2) \ldots . .(2 \text { or } 1)}
$$

It is important to note that we multiply by $(\pi / 2)$; when both m and n are even.

