Leibnitz's Rule.

(1) If $f(x)$ is continuous and $u(x), v(x)$ are differentiable functions in the interval $[a, b]$, then,

$$
\frac{d}{d x} \int_{u(x)}^{v(x)} f(t) d t=f\{v(x)\} \frac{d}{d x}\{v(x)\}-f\{u(x)\} \frac{d}{d x}\{u(x)\}
$$

(2) If the function $\phi(x)$ and $\psi(x)$ are defined on $[\mathrm{a}, \mathrm{b}]$ and differentiable at a point $x \in(a, b)$, and $f(x, t)$ is continuous, then, $\frac{d}{d x}\left[\int_{\phi(x)}^{\psi(x)} f(x, t) d t\right]$

$$
=\int_{\phi(x)}^{\mu(x)} \frac{d}{d x} f(x, t) d t+\left\{\frac{d \psi(x)}{d x}\right\} f(x, \psi(x))-\left\{\frac{d \phi(x)}{d x}\right\} f(x, \phi(x))
$$

