Mathematical Reasoning:

- A sentence is called a mathematically acceptable statement if it is either true or false but not both.
- A sentence is neither imperative nor interrogative nor exclamatory.
- A declarative sentence containing variables is an open statement if it becomes a statement when the variables are replaced by some definite values.
- A compound statement is a statement which is made up of two or more statements. Each of this statement is termed to be a compound statement.
- The compound statements are combined by the word "and" (^) the resulting statement is called a conjunction denoted as p \(\infty \)q.
- The compound statement with "And" is true if all its component statements are true.
- The following truth table shows the truth values of $p \land q$ (p and q) and $q \land p$ (q and p):

Truth Table (p v q, q v p)			
p	q	рлф	q∧p
T	T	Т	Т
T	F	F	F
F	Т	F	F
F	F	F	F

Rule: $p \wedge q$ is true only when p and q are true

• Compound statements p and q are combined by the connective 'OR'

(v) then the compound statement denoted as p ν q so formed is called a disjunction.??

Truth Table (p v q, q v p)			
p	q	p v q	q v p
T	Т	T	T
T	F	Т	Т
F	T	Т	Т
F	F	F	F

Rule: p v q is false only when both p and q are false.

• The denial of a statement is called the negation of the statement. The truth table for the same is given below:

Truth Table (~p)		
p	~p	~ (~p)
T	F	Т
F	Т	F

Rule: ~ is true only when p is false

- Negation is not a binary operation, it is a unary operation i.e. a modifier.
- There are three types of implications:
- "If then"
- "Only if"
- "If and only if"
- "If then" type of compound statement is called conditional statement. The statement 'if p then q' is denoted by $p \rightarrow q$ or by $p \Rightarrow$

q. $p \rightarrow q$ also means:

- p is sufficient for q
- q is necessary for p
- p only if q
- p leads to q
- q if p
- q when p
- if p then q
- Truth table for $p \rightarrow q$

•

Truth Table $(p \rightarrow q, q \rightarrow p)$			
p	q	$p \rightarrow q$	$q \rightarrow p$
T	T	Т	T
T	F	F	Т
F	Т	Т	F
F	F	Т	Т

Rule: $p \rightarrow q$ is false only when p is true and q is false.

- If and only if type of compound statement is called biconditional or equivalence or double conditional. represented as $p \Leftrightarrow q$ or $p \Leftrightarrow q$, it means
- p is a necessary and sufficient condition for q
- q is a necessary and sufficient condition for p

q. $p \rightarrow q$ also means:

- p is sufficient for q
- q is necessary for p
- p only if q
- p leads to q
- q if p
- q when p
- if p then q
- Truth table for $p \rightarrow q$

•

Truth Table $(p \rightarrow q, q \rightarrow p)$			
p	q	$p \rightarrow q$	$q \rightarrow p$
T	T	Т	T
T	F	F	Т
F	Т	Т	F
F	F	Т	Т

Rule: $p \rightarrow q$ is false only when p is true and q is false.

- If and only if type of compound statement is called biconditional or equivalence or double conditional. represented as $p \Leftrightarrow q$ or $p \Leftrightarrow q$, it means
- p is a necessary and sufficient condition for q
- q is a necessary and sufficient condition for p

- If p then q and if q then p
- q if and only if p
- Truth table for $p \leftrightarrow q$ or $q \leftrightarrow p$

Truth Table $(p \leftrightarrow q, q \leftrightarrow p)$				
p	q	$p \leftrightarrow q$	$q \leftrightarrow p$	
T	T	T	T	
T	F	F	F	
F	T	F	F	
F	F	Т	Т	

Rule: $p \leftrightarrow q$ is true only when both p and q have the same truth value.

- Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$.
- Converse of $p \rightarrow q$ is $q \rightarrow p$.
- Truth table for $p \rightarrow q$

Tr	Truth Table $(p \rightarrow q)$				
p	q	$p \rightarrow q$	\sim q \rightarrow \sim p (Contrapositive)	$q \leftrightarrow p$ (Converse)	
T	T	T	T	T	
Т	F	F	F	T	
F	T	Т	T	F	
F	F	Т	T	T	

- The compound statements which are true for any truth value of their components are called tautologies.
- Truth table for a tautology 'p $\vee \sim$ p"?, p being a logical statement

Truth Table (p v \sim p)

p	~p	p v ~p
Т	F	T
F	T	Т

• ?The negation of tautology is a fallacy or a contradiction. The truth table for 'p \wedge ~ p" which is fallacy?, p being a logical statement is given below

Tru	Truth Table (p $\land \sim p$)		
p	~p	p ∧ ~p	
T	F	F	
F	T	F	

- Important points on tautology and fallacy:
- p v q is true iff at least one of p and q is true
- $p \land q$ is true iff both p and q are true
- A tautology is always true
- A fallacy is always false.
- Statements satisfy the following laws:
- Idempotent Laws: If p is any statement then p \vee p = p and p \wedge p = p
- Associative Laws: If p, q, r are any three statements, then p v (q v r) = $(p \lor q) \lor r$ and $p \land (q \land r) = (p \land q) \land r$
- Commutative Laws: If p, q are any two statements, then p v q = q v p and p $\wedge q = q \wedge p$
- \bullet **Distributive Laws:** If p, q, r are any three statements then p \land (q \lor

$$r) = (p \land q) \lor (p \land r)$$
 and $p \lor (q \land r) = (p \lor q) \land (p \lor r)$

- **Identity Laws:** If p is any statement, t is tautology and c is a contradiction, then $p \lor t = t$, $p \land t = p$, $p \lor c = p$ and $p \land c = c$
- Complement Laws: If t is tautology, c is a contradiction and p is any statement then p v (\sim p) = t, p \wedge (\sim p) = c, \sim t = c and \sim c = t
- Involution Law: If p is any statement, then $\sim (\sim p) = p$
- **De-Morgan's Law:** If p and q are two statements then \sim (p v q) = $(\sim$ p) \wedge $(\sim$ q) and \sim (p \wedge q) = $(\sim$ p) v $(\sim$ q)