Gravitational Field.

The space surrounding a material body in which gravitational force of attraction can be experienced is called its gravitational field.

Gravitational field intensity : The intensity of the gravitational field of a material body at any point in its field is defined as the force experienced by a unit mass (test mass) placed at that point, provided the unit mass (test mass) itself does not produce any change in the field of the body.

So if a test mass m at a point in a gravitational field experiences a force \vec{F} then

$$
\vec{I}=\frac{\vec{F}}{m}
$$

Important points
(i) It is a vector quantity and is always directed towards the center of gravity of body whose gravitational field is considered.
(ii) Units: Newton/kg or m/s2
(iii) Dimension: [MOLT-2]
(iv) If the field is produced by a point mass M and the test mass m is at a distance r from it then by Newton's law of gravitation $F=\frac{G M m}{r^{2}}$

Then intensity of gravitational field $I=\frac{F}{m}=\frac{G M m / r^{2}}{m}$

$$
\therefore \quad I=\frac{G M}{r^{2}}
$$

(v) As the distance ${ }^{(r)}$ of test mass from the point mass ${ }^{(M)}$, increases, intensity of gravitational field decreases

$$
I=\frac{G M}{r^{2}} ; \therefore \propto \frac{1}{r^{2}}
$$

(vi) Intensity of gravitational field $I=0$, when $r=\infty$.

(vii) Intensity at a given point (P) due to the combined effect of different point masses can be calculated by vector sum of different intensities

$$
\overrightarrow{I_{n e t}}=\overrightarrow{I_{1}}+\overrightarrow{I_{2}}+\overrightarrow{I_{3}}+\ldots \ldots .
$$

(viii) Point of zero intensity: If two bodies A and B of different masses ${ }^{m_{1}}$ and ${ }^{m_{2}}$ are d distance apart.

Let P be the point of zero intensity i.e., the intensity at this point is equal and opposite due to two bodies A and B and if any test mass placed at this point it will not experience any force.

For point $\mathrm{P} \quad \overrightarrow{I_{1}}+\overrightarrow{I_{2}}=0 \Rightarrow \frac{-G m_{1}}{x^{2}}+\frac{G m_{2}}{(d-x)^{2}}=0$

By solving

$$
x=\frac{\sqrt{m_{1}} d}{\sqrt{m_{1}}+\sqrt{m_{2}}} \quad(d-x)=\frac{\sqrt{m_{2}} d}{\sqrt{m_{1}}+\sqrt{m_{2}}}
$$

(ix) Gravitational field line is a line, straight or curved such that a unit mass placed in the field of another mass would always move along this line. Field lines for an isolated mass m are radially inwards.
(x) As $I=\frac{G M}{r^{2}}$ and also $g=\frac{G M}{R^{2}} \therefore \quad I=g$

Thus the intensity of gravitational field at a point in the field is equal to acceleration of test mass placed at that point.

