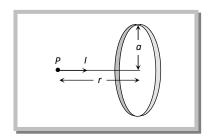

Gravitational Field Intensity for Different Bodies.

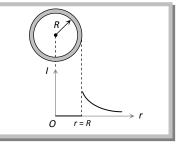
(1) Intensity due to uniform solid sphere

Outside the surface	On the surface	Inside the surface
r > R	r = R	r < R
$I = \frac{GM}{r^2}$	$I = \frac{GM}{R^2}$	$I = \frac{GMr}{R^3}$



(2) Intensity due to spherical shell

Outside the surface	On the surface	Inside the surface
r > R	r = R	r < R
$I = \frac{GM}{r^2}$	$I = \frac{GM}{R^2}$	I = 0


(3) Intensity due to uniform circular ring

At a point on its axis	At the center of the ring
$I = \frac{GMr}{\left(a^2 + r^2\right)^{3/2}}$	I = 0

(4) Intensity due to uniform disc

At a point on its axis	At the center of the disc	
	<u> </u>	$\xrightarrow{P} \stackrel{\theta}{\longrightarrow} r \xrightarrow{a}$

$I = \frac{2GMr}{a^2} \left[\frac{1}{r} - \frac{1}{\sqrt{r^2 + a^2}} \right]$	I = 0
$I = \frac{2GM}{a^2} \left(1 - \cos\theta\right)$	