Gravitational Potential.

At a point in a gravitational field potential V is defined as negative of work done per unit mass in shifting a test mass from some reference point (usually at infinity) to the given point i.e.

$$
\begin{aligned}
& \qquad V=-\frac{W}{m}=-\int \frac{\vec{F} \cdot d \vec{r}}{m}=-\int \vec{I} \cdot d \vec{r} \quad \quad\left[\text { As } \frac{F}{m}=I_{]}\right. \\
& \therefore \quad I=-\frac{d V}{d r}
\end{aligned}
$$

i.e., negative gradient of potential gives intensity of field or potential is a scalar function of position whose space derivative gives intensity. Negative sign indicates that the direction of intensity is in the direction where the potential decreases.

Important points
(i) It is a scalar quantity because it is defined as work done per unit mass.
(ii) Unit: Joule/kg or m2/sec2
(iii) Dimension: [MOL2T-2]
(iv) If the field is produced by a point mass then

$$
V=-\int I d r=-\int\left(-\frac{G M}{r^{2}}\right) d r
$$

[As
$I=-\frac{G M}{r^{2}}$]
\therefore

$$
V=-\frac{G M}{r}+c
$$

[Here $\mathrm{c}=$ constant of
integration]
Assuming reference point at ∞ and potential to be zero there we get

$$
0=-\frac{G M}{\infty}+c \Rightarrow c=0
$$

\therefore Gravitational potential $V=-\frac{G M}{r}$
(v) Gravitational potential difference: It is defined as the work done to move a unit mass from

one point to the other in the gravitational field. The gravitational potential difference in bringing unit test mass m from point A to point B under the gravitational influence of source mass M is

$$
\Delta V=V_{B}-V_{A}=\frac{W_{A \rightarrow B}}{m}=-G M\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
$$

(vi) Potential due to large numbers of particle is given by scalar addition of all the potentials.

$$
\begin{aligned}
& V=V_{1}+V_{2}+V_{3}+\ldots \ldots \ldots . \\
& =-\frac{G M}{r_{1}}-\frac{G M}{r_{2}}-\frac{G M}{r_{3}} \ldots \ldots \ldots . \\
& =-G \sum_{i=1}^{i=n} \frac{M_{i}}{r_{i}}
\end{aligned}
$$

(vii) Point of zero potential: It is that point in the gravitational field, if the unit mass is shifted from infinity to that point then net work done will be equal to zero.

Let m 1 and m 2 are two masses placed at d distance apart and P is the point of zero potential in between the two masses.

Net potential for point $P=V_{A}+V_{B}=0$
$\Rightarrow \quad-\frac{G m_{1}}{x}-\frac{G m_{2}}{d-x}=0$
By solving $\quad x=\frac{m_{1} d}{m_{1}-m_{2}}$

