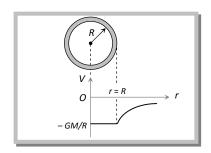
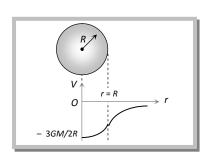

Gravitational Potential for Different Bodies.


(1) Potential due to uniform ring

At a point on its axis	At the center
$V = -\frac{GM}{\sqrt{a^2 + r^2}}$	$V = -\frac{GM}{a}$


(2) Potential due to spherical shell

Outside the surface	On the surface	Inside the surface
r > R	r = R	r < R
$V = \frac{-GM}{r}$	$V = \frac{-GM}{R}$	$V = \frac{-GM}{R}$

(3) Potential due to uniform solid sphere

Outside the surface	On the surface	Inside the surface
r > R	r = R	r < R
$V = \frac{-GM}{r}$	$V_{surface} = \frac{-GM}{R}$	$V = \frac{-GM}{2R} \left[3 - \left(\frac{r}{R} \right)^2 \right]$ At the center (r = 0) $V_{centre} = \frac{-3}{2} \frac{GM}{R}$ (max.) $V_{centre} = \frac{3}{2} V_{surface}$

