Gravitational Potential Energy.

The gravitational potential energy of a body at a point is defined as the amount of work done in bringing the body from infinity to that point against the gravitational force.

$$
\begin{aligned}
W & =\int_{\infty}^{r} \frac{G M m}{x^{2}} d x=-G M m\left[\frac{1}{x}\right]_{\infty}^{r} \\
W & =-\frac{G M m}{r}
\end{aligned}
$$

This work done is stored inside the body as its gravitational potential energy

$$
\therefore U=-\frac{G M m}{r}
$$

Important points
(i) Potential energy is a scalar quantity.
(ii) Unit: Joule
(iii) Dimension: [ML2T-2]
(iv) Gravitational potential energy is always negative in the gravitational field because the force is always attractive in nature.
(v) As the distance r increases, the gravitational potential energy becomes less negative i.e., it increases.
(vi) If $r=\infty$ then it becomes zero (maximum)
(vii) In case of discrete distribution of masses

Gravitational potential energy $U=\sum u_{i}=-\left[\frac{G m_{1} m_{2}}{r_{12}}+\frac{G m_{2} m_{3}}{r_{23}}+\ldots \ldots ..\right]$
(viii) If the body of mass m is moved from a point at a distance ${ }^{r_{1}}$ to a point at distance
$r_{2}\left(r_{1}>r_{2}\right)$ then change in potential energy $\Delta U=\int_{r_{1}}^{r_{2}} \frac{G M m}{x^{2}} d x=-G M m\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right]$ or
$\Delta U=G M m\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
As ${ }^{r_{1}}$ is greater than $r^{r_{2}}$, the change in potential energy of the body will be negative. It means that if a body is brought closer to earth its potential energy decreases.
(ix) Relation between gravitational potential energy and potential $U=-\frac{G M m}{r}=m\left[\frac{-G M}{r}\right]$
$\therefore \quad U=m V$
(x) Gravitational potential energy at the center of earth relative to infinity.

$$
U_{\text {centre }}=m V_{\text {centre }}=m\left(-\frac{3}{2} \frac{G M}{R}\right)=-\frac{3}{2} \frac{G M m}{R}
$$

(xi) Gravitational potential energy of a body at height h from the earth surface is given by

$$
U_{h}=-\frac{G M m}{R+h}=-\frac{g R^{2} m}{R+h} \equiv-\frac{m g R}{1+\frac{h}{R}}
$$

