Work Done Against Gravity.

If the body of mess m is moved from the surface of earth to a point at distance h above the surface of earth, then change in potential energy or work done against gravity will be

$$
\begin{array}{ll}
& W=\Delta U=G M m\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right] \\
\Rightarrow & W=G M m\left[\frac{1}{R}-\frac{1}{R+h}\right] \\
& W=\frac{G M m h}{R^{2}\left(1+\frac{h}{R}\right)}=\frac{m g h}{1+\frac{h}{R}}
\end{array} \quad\left[\text { [As } r_{1}=R \text { and } \frac{G M}{R^{2}}=g\right]
$$

Important points

(i) When the distance h is not negligible and is comparable to radius of the earth, then we will use above formula.
(ii) If $h=n R$ then $W=m g R\left(\frac{n}{n+1}\right)$
(iii) If $h=R$ then $W=\frac{1}{2} m g R$
(iv) If h is very small as compared to radius of the earth then term h / R can be neglected

From

$$
W=\frac{m g h}{1+h / R}=m g h \quad\left[\text { As } \frac{h}{R} \rightarrow 0\right]
$$

