Work Done Against Gravity.

If the body of mess m is moved from the surface of earth to a point at distance h above the surface of earth, then change in potential energy or work done against gravity will be

$$W = \Delta U = GMm \left[\frac{1}{r_1} - \frac{1}{r_2} \right]$$

$$W = GMm \left[\frac{1}{R} - \frac{1}{R+h} \right]$$

$$W = \frac{GMmh}{R^2 \left(1 + \frac{h}{R} \right)} = \frac{mgh}{1 + \frac{h}{R}}$$

$$As \frac{GM}{R^2} = g$$
[As $\frac{GM}{R^2} = g$]

Important points

(i) When the distance h is not negligible and is comparable to radius of the earth, then we will use above formula.

(ii) If
$$h = nR$$
 then $W = mgR\left(\frac{n}{n+1}\right)$

(iii) If
$$h = R$$
 then $W = \frac{1}{2} mgR$

(iv) If h is very small as compared to radius of the earth then term $\frac{h}{R}$ can be neglected

From
$$W = \frac{mgh}{1 + h/R} = mgh \qquad \left[\text{As } \frac{h}{R} \to 0 \right]$$