Velocity of a Planet in Terms of Eccentricity.

Applying the law of conservation of angular momentum at perigee and apogee

$$
\begin{gathered}
m v_{p} r_{p}=m v_{a} r_{a} \\
\Rightarrow \quad \frac{v_{p}}{v_{a}}=\frac{r_{a}}{r_{p}}=\frac{a+c}{a-c}=\frac{1+e}{1-e} \quad\left[\text { As } r_{p}=a-c, \quad r_{a}=a+c \quad \text { and eccentricity } e=\frac{c}{a}\right. \text {] }
\end{gathered}
$$

Applying the conservation of mechanical energy at perigee and apogee

$$
\begin{gathered}
\frac{1}{2} m v_{p}{ }^{2}-\frac{G M m}{r_{p}}=\frac{1}{2} m v_{a}{ }^{2}-\frac{G M m}{r_{a}} \Rightarrow v_{p}{ }^{2}-v_{a}{ }^{2}=2 G M\left[\frac{1}{r_{p}}-\frac{1}{r_{a}}\right] \\
\Rightarrow \quad v_{a}{ }^{2}\left[\frac{r_{a}{ }^{2}-r_{p}{ }^{2}}{r_{p}{ }^{2}}\right]=2 G M\left[\frac{r_{a}-r_{p}}{r_{a} r_{p}}\right] \quad\left[v_{p}=\frac{v_{a} r_{a}}{r_{p}}\right] \\
\Rightarrow \quad v_{a}{ }^{2}=\frac{2 G M}{r_{a}+r_{p}}\left[\frac{r_{p}}{r_{a}}\right] \Rightarrow v_{a}{ }^{2}=\frac{2 G M}{a}\left(\frac{a-c}{a+c}\right)=\frac{2 G M}{a}\left(\frac{1-e}{1+e}\right)
\end{gathered}
$$

Thus the speeds of planet at apogee and perigee are

$$
v_{a}=\sqrt{\frac{2 G M}{a}\left(\frac{1-e}{1+e}\right)}, \quad v_{p}=\sqrt{\frac{2 G M}{a}\left(\frac{1+e}{1-e}\right)}
$$

Note: The gravitational force is a central force so torque on planet relative to sun is always zero, hence angular momentum of a planet or satellite is always constant irrespective of shape of orbit.

