## Variation in g with Height.

Acceleration due to gravity at the surface of the earth

$$
\begin{equation*}
g=\frac{G M}{R^{2}} \tag{i}
\end{equation*}
$$

Acceleration due to gravity at height h from the surface of the earth

$$
\begin{align*}
& g^{\prime}=\frac{G M}{(R+h)^{2}}  \tag{ii}\\
& g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}
\end{align*}
$$



From (i) and (ii)

$$
\begin{equation*}
=g \frac{R^{2}}{r^{2}} \tag{iv}
\end{equation*}
$$

$[A s r=R+h]$

Important points
(i) As we go above the surface of the earth, the value of g decreases because $g^{g^{\prime} \propto \frac{1}{r^{2}}}$.
(ii) If $r=\infty$ then $g^{\prime}=0$, i.e., at infinite distance from the earth, the value of g becomes zero.
(iii) If $h \ll R$ i.e., height is negligible in comparison to the radius then from equation (iii) we get

$$
g^{\prime}=g\left(\frac{R}{R+h}\right)^{2}=g\left(1+\frac{h}{R}\right)^{-2}=g\left[1-\frac{2 h}{R}\right]
$$

$$
[\text { As } h \ll R]
$$

(iv) If $h \ll R$ then decrease in the value of g with height:

Absolute decrease $\Delta g=g-g^{\prime}=\frac{2 h g}{R}$
Fractional decrease $\frac{\Delta g}{g}=\frac{g-g^{\prime}}{g}=\frac{2 h}{R}$
Percentage decrease $\frac{\Delta g}{g} \times 100 \%=\frac{2 h}{R} \times 100 \%$

