## Variation in g with Depth.

Acceleration due to gravity at the surface of the earth

$$
\begin{equation*}
g=\frac{G M}{R^{2}}=\frac{4}{3} \pi \rho G R \tag{i}
\end{equation*}
$$

Acceleration due to gravity at depth d from the surface of the earth

$$
\begin{align*}
& g^{\prime}=\frac{4}{3} \pi \rho G(R-d)  \tag{ii}\\
& g^{\prime}=g\left[1-\frac{d}{R}\right]
\end{align*}
$$



From (i) and (ii)

Important points
(i) The value of g decreases on going below the surface of the earth. From equation (ii) we get $g^{\prime} \propto(R-d)$.

So it is clear that if $d$ increase, the value of $g$ decreases.
(ii) At the center of earth $d=R \therefore g^{\prime}=0$, i.e., the acceleration due to gravity at the center of earth becomes zero.
(iii) Decrease in the value of $g$ with depth

$$
\begin{aligned}
& \text { Absolute decrease } \begin{array}{l}
\Delta g=g-g^{\prime}=\frac{d g}{R} \\
\text { Fractional decrease } \frac{\Delta g}{g}=\frac{g-g^{\prime}}{g}=\frac{d}{R} \\
\text { Percentage decrease } \frac{\Delta g}{g} \times 100 \%=\frac{d}{R} \times 100 \%
\end{array} \$=\text {, }
\end{aligned}
$$

(iv) The rate of decrease of gravity outside the earth (if $h \ll R$ ) is double to that of inside the earth.

$$
\Rightarrow \frac{d}{R}=1-\frac{1}{n} \Rightarrow d=\left(\frac{n-1}{n}\right) R
$$

