Young's Modulus (Y).

It is defined as the ratio of normal stress to longitudinal strain within limit of proportionality.

$$
Y=\frac{\text { Normal stress }}{\text { longitudin al strain }}=\frac{F / A}{l / L}=\frac{F L}{A l}
$$

If force is applied on a wire of radius r by hanging a weight of mass M, then

$$
Y=\frac{M g L}{\pi r^{2} l}
$$

Important points
(i) If the length of a wire is doubled,

Then longitudinal strain $=\frac{\text { change in length }(l)}{\text { initial length }(L)}=\frac{\text { final length }- \text { initial length }}{\text { Initial length }}=\frac{2 L-L}{L}=1$
$\therefore \quad$ Young's modulus $=\frac{\frac{\text { stress }}{\text { strain }}}{\Rightarrow} \quad Y=$ stress $\quad[$ As strain $=1]$
So young's modulus is numerically equal to the stress which will double the length of a wire.
(ii) Increment in the length of wire $\quad l=\frac{F L}{\pi r^{2} Y} \quad\left[\right.$ As $\left.Y=\frac{F L}{A l}\right]$

So if same stretching force is applied to different wires of same material, $l \propto \frac{L}{r^{2}}$
[As F and Y are constant]
i.e., greater the ratio $\frac{L}{r^{2}}$, greater will be the elongation in the wire.
(iii) Elongation in a wire by its own weight: The weight of the wire Mg act at the center of gravity of the wire so that length of wire which is stretched will be L/2.
\therefore Elongation $l=\frac{F L}{A Y}=\frac{M g(L / 2)}{A Y}=\frac{M g L}{2 A Y}=\frac{L^{2} d g}{2 Y} \quad \quad$ [As mass (M) $=\operatorname{volume}(\mathrm{AL}) \times$
density (d)]
(iv) Thermalstress: If a rod is fixed between two rigid supports, due to change in temperature its length will change and so it will exert a normal stress (compressive if temperature increases and tensile if temperature decreases) on the supports. This stress is called thermal s

As by definition, coefficient of linear expansion $\alpha=\frac{l}{L \Delta \theta}$

$\Rightarrow \quad$ Thermal strain $\frac{l}{L}=\alpha \Delta \theta$
So thermal stress $=\mathrm{Y} \alpha \Delta \theta \quad$ [As $\mathrm{Y}=$ stress/strain]
And tensile or compressive force produced in the body $=\mathrm{YA} \alpha \Delta \theta$

Note: In case of volume expansion Thermal stress $=\mathrm{K} \gamma \Delta \theta$
Where $\quad \mathrm{K}=$ Bulk modulus, $\gamma=$ coefficient of cubical expansion
(v) Force between the two rods: Two rods of different metals, having the same area of cross section A, are placed end to end between two massive walls as shown in figure. The first rod has a length L1, coefficient of linear expansion $\alpha 1$ and young's modulus Y 1 . The corresponding quantities for second rod are L2, $\alpha 2$ and Y 2 . If the temperature of both the rods is now raised by T degrees.

Increase in length of the composite rod (due to heating) will be equal to
$l_{1}+l_{2}=\left[L_{1} \alpha_{1}+L_{2} \alpha_{2}\right] T$
$[A s I=L \alpha \Delta \theta]$
And due to compressive force F from the walls due to elasticity,
Decrease in length of the composite rod will be equal to $\left[\frac{L_{1}}{Y_{1}}+\frac{L_{2}}{Y_{2}}\right] \frac{F}{A} \quad\left[\right.$ As $\left.l=\frac{F L}{A Y}\right]$
As the length of the composite rod remains unchanged the increase in length due to heating
must be equal to decrease in length due to compression i.e.

$$
\frac{F}{A}\left[\frac{L_{1}}{Y_{1}}+\frac{L_{2}}{Y_{2}}\right]=\left[L_{1} \alpha_{1}+L_{2} \alpha_{2}\right] T
$$

or

$$
F=\frac{A\left[L_{1} \alpha_{1}+L_{2} \alpha_{2}\right] T}{\left[\frac{L_{1}}{Y_{1}}+\frac{L_{2}}{Y_{2}}\right]}
$$

(vi) Force constant of wire: Force required to produce unit elongation in a wire is called force constant of material of wire. It is denoted by k.

$$
\begin{equation*}
\therefore \quad k=\frac{F}{l} \tag{i}
\end{equation*}
$$

But from the definition of young's modulus $\quad Y=\frac{F / A}{l / L} \Rightarrow \frac{F}{l}=\frac{Y A}{L}$
From (i) and (ii) $k=\frac{Y A}{L}$

It is clear that the value of force constant depends upon the dimension (length and area of cross section) and material of a substance.
(vii) Actual length of the wire: If the actual length of the wire is L, then under the tension $T 1$, its length becomes L1 and under the tension T2, its length becomes L2.
$L_{1}=L+l_{1} \Rightarrow L_{1}=L+\frac{T_{1}}{k}$
(i) and $L_{2}=L+l_{2} \Rightarrow L_{2}=L+\frac{T_{2}}{k}$

From (i) and (ii) we get $L=\frac{L_{1} T_{2}-L_{2} T_{1}}{T_{2}-T_{1}}$

When longitudinal tension 4 N is applied on it

$$
\begin{equation*}
L+\frac{4}{k}=a \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
L+\frac{5}{k}=b \tag{ii}
\end{equation*}
$$

By solving (i) and (ii) we get $k=\frac{1}{b-a}$ and $L=5 a-4 b$
Now when longitudinal tension 9 N is applied on elastic string then its length $=L+\frac{9}{k}$ $=5 a-4 b+9(b-a)=5 b-4 a$

