## Bulk Modulus.

When a solid or fluid (liquid or gas) is subjected to a uniform pressure all over the surface, such that the shape remains the same, then there is a change in volume.

Then the ratio of normal stress to the volumetric strain within the elastic limits is called as Bulk modulus. This is denoted by K.

$$
\begin{aligned}
& K=\frac{\text { Normal stress }}{\text { volumetric strain }} \\
& K=\frac{F / A}{-\Delta V / V}=\frac{-p V}{\Delta V}
\end{aligned}
$$



Where $p=$ increase in pressure; $V=$ original volume; $\Delta V=$ change in volume
The negative sign shows that with increase in pressure $p$, the volume decreases by $\Delta V$ i.e. if $p$ is positive, $\Delta \mathrm{V}$ is negative. The reciprocal of bulk modulus is called compressibility.
$\mathrm{C}=$ compressibility $=\frac{1}{K}=\frac{\Delta V}{p V}$
S.I. unit of compressibility is $\mathrm{N}-1 \mathrm{~m} 2$ and C.G.S. unit is dyne -1 cm 2 .

Gases have two bulk moduli, namely isothermal elasticity E $\theta$ and adiabatic elasticity $\mathrm{E} \phi$.
(1) Isothermal elasticity (E $\theta$ ): Elasticity possess by a gas in isothermal condition is defined as isothermal elasticity.

For isothermal process, PV = constant (Boyle's law)
Differentiating both sides $\mathrm{PdV}+\mathrm{VdP}=0 \Rightarrow \mathrm{PdV}=-\mathrm{VdP}$

$$
P=\frac{d P}{(-d V / V)}=\frac{\text { stress }}{\text { strain }}=E_{\theta}
$$

$\therefore \mathrm{E} \theta=\mathrm{P}$
i.e., Isothermal elasticity is equal to pressure.
(2) Adiabatic elasticity ( $\mathrm{E} \phi$ ): Elasticity possess by a gas in adiabatic condition is defined as adiabatic elasticity.

For adiabatic process, $P V^{\gamma}=$ constant $\quad$ (Poisson's law)
Differentiating both sides, $P \gamma V^{\gamma-1} d V+V^{\gamma} d P=0 \Rightarrow \gamma P d V+V d P=0$

$$
\gamma P=\frac{d P}{\left(\frac{-d V}{V}\right)}=\frac{\text { stress }}{\text { strain }}=E_{\phi}
$$

$\therefore \quad \mathrm{E} \phi=\gamma \mathrm{P}$
i.e., adiabatic elasticity is equal to $\gamma$ times pressure.

$$
\left[\text { Where }{ }^{\gamma=\frac{C_{p}}{C_{v}} \text { ] }}\right.
$$

Note: Ratio of adiabatic to isothermal elasticity $\frac{E_{\phi}}{E_{\theta}}=\frac{\gamma P}{P}=\gamma>1 \quad \therefore \mathrm{E} \phi>\mathrm{E} \theta$
i.e., adiabatic elasticity is always more than isothermal elasticity.

