Fractional Change in the Radius of Sphere.

A solid sphere of radius R made of a material of bulk modulus K is surrounded by a liquid in a cylindrical container.

A massless piston of area a floats on the surface of the liquid.
Volume of the spherical body $V=\frac{4}{3} \pi R^{3}$

$$
\begin{align*}
& \frac{\Delta V}{V}=3 \frac{\Delta R}{R} \\
\therefore \quad & \frac{\Delta R}{R}=\frac{1}{3} \frac{\Delta V}{V} \tag{i}
\end{align*}
$$

Bulk modulus $K=-V \frac{\Delta P}{\Delta V}$
$\therefore \quad\left|\frac{\Delta V}{V}\right|=\frac{\Delta P}{K}=\frac{m g}{A K} \quad\left[\right.$ As $\left.\Delta P=\frac{m g}{A}\right]$
Substituting the value of $\frac{\Delta V}{V}$ from equation (ii) in equation (i) we get $\frac{\Delta R}{R}=\frac{1}{3} \frac{\mathrm{mg}}{\mathrm{AK}}$

