Torsion of Cylinder.

If the upper end of a cylinder is clamped and a torque is applied at the lower end the cylinder gets twisted by angle θ. Simultaneously shearing strain ${ }^{\phi}$ is produced in the cylinder.
(i) The angle of twist θ is directly proportional to the distance from the fixed end of the cylinder.

At fixed end $\theta=0^{\circ}$ and at free end $\theta=$ maximum.

(ii) The value of angle of shear ϕ is directly proportional to the radius of the cylindrical shell.

At the axis of cylinder $\phi=0$ and at the outermost shell $\phi=$ maximum.
(iii) Relation between angle of twist (θ) and angle of shear (ϕ)

$$
\mathrm{AB}=\mathrm{r} \theta=\phi \mathrm{l} \quad \therefore \quad \phi=\frac{r \theta}{l}
$$

(iv) Twisting couple per unit twist or torsional rigidity or torque required to produce unit twist.

$$
C=\frac{\pi \eta r^{4}}{2 l} \quad \therefore C \propto r^{4} \propto A^{2}
$$

(v) Work done in twisting the cylinder through an angle θ is $W=\frac{1}{2} C \theta^{2}=\frac{\pi \eta r^{4} \theta^{2}}{4 l}$

