
 

Hydrostatics 
It is common knowledge that the pressure of the atmosphere (about 105 newtons per 
square metre) is due to the weight of air above the Earth’s surface, that this pressure 
falls as one climbs upward, and, correspondingly, that pressure increases as one dives 
deeper into a lake (or comparable body of water). Mathematically, the rate at which 
the pressure in a stationary fluid varies with height z in a vertical gravitational field of 
strength g is given by 

 

If ρ and g are both independent of z, as is more or less the case in lakes, then 

 

This means that, since ρ is about 103 kilograms per cubic metre for water and g is 
about 10 metres per second squared, the pressure is already twice the atmospheric 
value at a depth of 10 metres. Applied to the atmosphere, equation (124) would imply 
that the pressure falls to zero at a height of about 10 kilometres. In the atmosphere, 
however, the variation of ρ with z is far from negligible and (124) is unreliable as a 
consequence; a better approximation is given below in the section Hydrodynamics: 
Compressible flow in gases. 

 

Differential manometers 
Instruments for comparing pressures are called differential manometers, and the 
simplest such instrument is a U-tube containing liquid, as shown in Figure 1A. The 
two pressures of interest, p1 and p2, are transmitted to the two ends of the liquid 
column through an inert gas—the density of which is negligible by comparison with 
the liquid density, ρ—and the difference of height, h, of the two menisci is measured. 
It is a consequence of (124) that 



 
Figure 1: Schematic representations of (A) a differential manometer, (B) a Torricellian barometer, and (C) a 

siphon.Encyclopædia Britannica, Inc. 

 

A barometer for measuring the pressure of the atmosphere in absolute terms is simply 
a manometer in which p2 is made zero, or as close to zero as is feasible. The barometer 
invented in the 17th century by the Italian physicist and mathematician Evangelista 
Torricelli, and still in use today, is a U-tube that is sealed at one end (see Figure 1B). 
It may be filled with liquid, with the sealed end downward, and then inverted. On 
inversion, a negative pressure may momentarily develop at the top of the liquid 
column if the column is long enough; however, cavitation normally occurs there and 
the column falls away from the sealed end of the tube, as shown in the figure. 
Between the two exists what Torricelli thought of as a vacuum, though it may be very 
far from that condition if the barometer has been filled without scrupulous precautions 
to ensure that all dissolved or adsorbed gases, which would otherwise collect in this 
space, have first been removed. Even if no contaminating gas is present, the 
Torricellian vacuum always contains the vapour of the liquid, and this exerts a 
pressure which may be small but is never quite zero. The liquid conventionally used 
in a Torricelli barometer is of course mercury, which has a low vapour pressure and a 
high density. The high density means that h is only about 760 millimetres; if water 
were used, it would have to be about 10 metres instead. 



 
Torricelli, EvangelistaItalian physicist and mathematician Evangelista Torricelli, inventor of the mercury 

barometer.Photos.com/Thinkstock 

Figure 1C illustrates the principle of the siphon. The top container is open to the 
atmosphere, and the pressure in it, p2, is therefore atmospheric. To balance this and the 
weight of the liquid column in between, the pressure p1 in the bottom container ought 
to be greater by ρgh. If the bottom container is also open to the atmosphere, 
then equilibrium is clearly impossible; the weight of the liquid column prevails and 
causes the liquid to flow downward. The siphon operates only as long as the column is 
continuous; it fails if a bubble of gas collects in the tube or if cavitation occurs. 
Cavitation therefore limits the level differences over which siphons can be used, and it 
also limits (to about 10 metres) the depth of wells from which water can be pumped 
using suction alone. 

Archimedes’ principle 
Consider now a cube of side d totally immersed in liquid with its top and bottom faces 
horizontal. The pressure on the bottom face will be higher than on the top by ρgd, and, 
since pressure is force per unit area and the area of a cube face is d2, the resultant 



upthrust on the cube is ρgd3. This is a simple example of the so-called Archimedes’ 
principle, which states that the upthrust experienced by a submerged or floating body 
is always equal to the weight of the liquid that the body displaces. 
As Archimedes must have realized, there is no need to prove this by detailed 
examination of the pressure difference between top and bottom. It is obviously true, 
whatever the body’s shape. It is obvious because, if the solid body could somehow be 
removed and if the cavity thereby created could somehow be filled with more fluid 
instead, the whole system would still be in equilibrium. The extra fluid would, 
however, then be experiencing the upthrust previously experienced by the solid body, 
and it would not be in equilibrium unless this were just sufficient to balance its 
weight. 
Archimedes’ problem was to discover, by what would nowadays be called a 
nondestructive test, whether the crown of King Hieron II was made of pure gold or of 
gold diluted with silver. He understood that the pure metal and the alloy would differ 
in density and that he could determine the density of the crown by weighing it to find 
its mass and making a separate measurement of its volume. Perhaps the inspiration 
that struck him (in his bath) was that one can find the volume of any object by 
submerging it in liquid in something like a measuring cylinder (i.e., in a container 
with vertical sides that have been suitably graduated) and measuring the displacement 
of the liquid surface. If so, he no doubt realized soon afterward that a more elegant 
and more accurate method for determining density can be based on the principle that 
bears his name. This method involves weighing the object twice, first, when it is 
suspended in a vacuum (suspension in air will normally suffice) and, second, when it 
is totally submerged in a liquid of density ρ. If the density of the object is ρ′, the ratio 
between the two weights must be 

 

If ρ′ is less than ρ, then W2, according to equation (126), is negative. What that means 
is that the object does not submerge of its own accord; it has to be pushed downward 
to make it do so. If an object with a mean density less than that of water is placed in a 
lake and not subjected to any downward force other than its own weight, it naturally 
floats on the surface, and Archimedes’ principle shows that in equilibrium the volume 
of water which it displaces is a fraction ρ′/ρ of its own volume. A hydrometer is an 
object graduated in such a way that this fraction may be measured. By floating a 
hydrometer first in water of density ρ0 and then in some other liquid of density ρ1 and 
comparing the readings, one may determine the ratio ρ1/ρ0—i.e., the specific gravity of 
the other liquid. 

 



In what orientation an object floats is a matter of grave concern to those who design 
boats and those who travel in them. A simple example will suffice to illustrate the 
factors that determine orientation. Figure 2 shows three of the many possible 
orientations that a uniform square prism might adopt when floating, with half its 
volume submerged in a liquid for which ρ = 2ρ′; they are separated by rotations of 
22.5°. In each of these diagrams, C is the centre of mass of the prism, and B, a point 
known as the centre of buoyancy, is the centre of mass of the displaced water. The 
distributed forces acting on the prism are equivalent to its weight acting downward 
through C and to the equal weight of the displaced water acting upward through B. In 
general, therefore, the prism experiences a torque. In Figure 2B the torque is 
counterclockwise, and so it turns the prism away from 2A and toward 2C. In 2C the 
torque vanishes because B is now vertically below C, and this is the orientation that 
corresponds to stable equilibrium. The torque also vanishes in 2A, and the prism can 
in principle remain indefinitely in that orientation as well; the equilibrium in this case, 
however, is unstable, and the slightest disturbance will cause the prism to topple one 
way or the other. In fact, the potential energy of the system, which increases in a 
linear fashion with the difference in height between C and B, is at its smallest in 
orientation 2C and at its largest in orientation 2A. To improve the stability of a 
floating object one should, if possible, lower C relative to B. In the case of a boat, this 
may be done by redistributing the load inside. 

 
Figure 2: Three possible orientations of a uniform square prism floating in liquid of twice its density. The stable 

orientation is (C) (see text).Encyclopædia Britannica, Inc. 

Surface tension of liquids 



surface tensionExplanation of surface tension.Encyclopædia Britannica, Inc. 

Of the many hydrostatic phenomena in which the surface tension of liquids plays a 
role, the most significant is probably capillarity. Consider what happens when a tube 
of narrow bore, often called a capillary tube, is dipped into a liquid. If the liquid 
“wets” the tube (with zero contact angle), the liquid surface inside the tube forms a 
concave meniscus, which is a virtually spherical surface having the same radius, r, as 
the inside of the tube. The tube experiences a downward force of magnitude 2πrdσ, 
where σ is the surface tension of the liquid, and the liquid experiences a reaction of 
equal magnitude that lifts the meniscus through a height h such that 

 

—i.e., until the upward force for which surface tension is responsible is balanced by 
the weight of the column of liquid that has been lifted. If the liquid does not wet the 
tube, the meniscus is convex and depressed through the same distance h (see Figure 
3). A simple method for determining surface tension involves the measurement of h in 
one or the other of these situations and the use of equation (127) thereafter. 



  
  

Figure 3: Capillarity.Encyclopædia Britannica, Inc. 

It follows from equations (124) and (127) that the pressure at a point P just below the 
meniscus differs from the pressure at Q by an amount 

 

it is less than the pressure at Q in the case to which Figure 3A refers and greater than 
the pressure at Q in the other case. Since the pressure at Q is just the atmospheric 
pressure, it is equal to the pressure at a point immediately above the meniscus. Hence, 
in both instances there is a pressure difference of 2σ/r between the two sides of the 
curved meniscus, and in both the higher pressure is on the inner side of the curve. 
Such a pressure difference is a requirement of equilibrium wherever a liquid surface is 
curved. If the surface is curved but not spherical, the pressure difference is 

 

where r1 and r2 are the two principal radii of curvature. If it is cylindrical, one of these 
radii is infinite, and, if it is curved in opposite directions, then for the purposes of 
(129) they should be treated as being of opposite sign. 

 

The diagrams in Figure 3 were drawn to represent cross sections through cylindrical 
tubes, but they might equally well represent two vertical parallel plates that are partly 
submerged in the liquid a small distance apart. Consideration of how the pressure 
varies with height shows that over the range of height h the plates experience a greater 
pressure on their outer surfaces than on their inner surfaces; this is true whether the 



liquid wets both plates or not. It is a matter of observation that small objects floating 
near one another on the surface of a liquid tend to move toward one another, and it is 
the pressure difference just referred to that makes them behave in this way. 
One other problem having to do with surface tension will be considered here. The 
diagrams in Figure 4 show stages in the growth of a liquid drop on the end of a tube 
which the liquid is supposed to wet. In passing from stage A to stage B, by which time 
the drop is roughly hemispheric in shape, the radius of curvature of the drop 
diminishes; and it follows from (128) that, to bring about this growth, one must slowly 
increase the pressure of the liquid inside the tube. If the pressure could be held steady 
at the value corresponding to B, the drop would then become unstable, because any 
further growth (e.g., to the more or less spherical shape indicated in Figure 4C) would 
involve an increase in radius of curvature. The applied pressure would then exceed 
that required to hold the drop in equilibrium, and the drop would necessarily grow 
bigger still. In practice, however, it is easier to control the rate of flow of water 
through the tube, and hence the rate of growth of the drop, than it is to control the 
pressure. If the rate of flow is very small, drops will form the nonspherical shapes 
suggested by Figure 4D before they detach themselves and fall. It is not an easy 
matter to analyze the shape of a drop on the point of detachment, and there is no 
simple formula for the volume of the drop after it is detached. 

  

  
Figure 4: Stages in the formation of a liquid drop (see text).Encyclopædia Britannica, Inc. 

 

 


