
Hydrodynamics 
 
Bernoulli’s law 
 
Up to now the focus has been fluids at rest. This section deals with fluids that 
are in motion in a steady fashion such that the fluid velocity at each given 
point in space is not changing with time. Any flow pattern that is steady in this 
sense may be seen in terms of a set of streamlines, the trajectories of 
imaginary particles suspended in the fluid and carried along with it. In steady 
flow, the fluid is in motion but the streamlines are fixed. Where the streamlines 
crowd together, the fluid velocity is relatively high; where they open out, the 
fluid becomes relatively stagnant. 
When Euler and Bernoulli were laying the foundations of hydrodynamics, they 
treated the fluid as an idealized inviscid substance in which, as in a fluid at 
rest in equilibrium, the shear stresses associated with viscosity are zero and 
the pressure p is isotropic. They arrived at a simple law relating the variation 
of p along a streamline to the variation of v (the principle is credited to 
Bernoulli, but Euler seems to have arrived at it first), which serves to explain 
many of the phenomena that real fluids in steady motion display. To the 
inevitable question of when and why it is justifiable to neglect viscosity, there 
is no single answer. Some answers will be provided later in this article, but 
other matters will be taken up first. 
Consider a small element of fluid of mass m, which—apart from the force on it 
due to gravity—is acted on only by a pressure p. The latter is isotropic and 
does not vary with time but may vary from point to point in space. It is a well-
known consequence of Newton’s laws of motion that, when a particle of 
mass m moves under the influence of its weight mg and an additional 
force F from a point P where its speed is vP and its height is zP to a point Q 
where its speed is vQ and its height is zQ, the work done by the additional force 
is equal to the increase in kinetic and potential energy of the particle—i.e., that 

 

In the case of the fluid element under consideration, F may be related in a 
simple fashion to the gradient of the pressure, and one finds 

 



If the variations of fluid density along the streamline from P to Q are negligibly 
small, the factor ρ−1 may be taken outside the integral on the right-hand side of 
(131), which thereupon reduces to ρ−1(pQ - pP). Then (130) and (131) can be 
combined to obtain 

  

  

 

Since this applies for any two points that can be visited by a single element of 
fluid, one can immediately deduce Bernoulli’s (or Euler’s) important result that 
along each streamline in the steady flow of an inviscid fluid the quantity 

 

is constant. 

Under what circumstances are variations in the density negligibly small? 
When they are very small compared with the density itself—i.e., when 

 

where the symbol Δ is used to represent the extent of the change along a 
streamline of the quantity that follows it, and where Vs is the speed of 
sound (see below Compressible flow in gases). This condition is satisfied for 
all the flow problems having to do with water that are discussed below. If the 
fluid is air, it is adequately satisfied provided that the largest excursion in z is 
on the order of metres rather than kilometres and provided that the fluid 
velocity is everywhere less than about 100 metres per second. 
Bernoulli’s law indicates that, if an inviscid fluid is flowing along a pipe of 
varying cross section, then the pressure is relatively low at constrictions where 
the velocity is high and relatively high where the pipe opens out and the fluid 
stagnates. Many people find this situation paradoxical when they first 
encounter it. Surely, they say, a constriction should increase the local 
pressure rather than diminish it? The paradox evaporates as one learns to 
think of the pressure changes along the pipe as cause and the velocity 



changes as effect, instead of the other way around; it is only because the 
pressure falls at a constriction that the pressure gradient upstream of the 
constriction has the right sign to make the fluid accelerate. 

Paradoxical or not, predictions based on Bernoulli’s law are well-verified by 
experiment. Try holding two sheets of paper so that they hang vertically two 
centimetres or so apart and blow downward so that there is a current of air 
between them. The sheets will be drawn together by the reduction in pressure 
associated with this current. Ships are drawn together for much the same 
reason if they are moving through the water in the same direction at the same 
speed with a small distance between them. In this case, the current results 
from the displacement of water by each ship’s bow, which has to flow 
backward to fill the space created as the stern moves forward, and the current 
between the ships, to which they both contribute, is stronger than the current 
moving past their outer sides. As another simple experiment, listen to the 
hissing sound made by a tap that is almost, but not quite, turned off. What 
happens in this case is that the flow is so constricted and the velocity within 
the constriction so high that the pressure in the constriction is actually 
negative. Assisted by the dissolved gases that are normally present, the water 
cavitates as it passes through, and the noise that is heard is the sound of tiny 
bubbles collapsing as the water slows down and the pressure rises again on 
the other side. 

Two practical devices that are used by hydraulic engineers to monitor the flow 
of liquids though pipes are based on Bernoulli’s law. One is the venturi tube, a 
short length with a constriction in it of standard shape (see Figure 5A), which 
may be inserted into the pipe proper. If the velocity at point P, where the tube 
has a cross-sectional area AP, is vP and the velocity in the constriction, where 
the area is AQ, is vQ, the continuity condition—the condition that the mass 
flowing through the pipe per unit time has to be the same at all points along its 
length—suggests that ρPAPvP = ρQAQvQ, or that APvP = AQvQ if the difference 
between ρP and ρQ is negligible. Then Bernoulli’s law 

indicates  



 
Figure 5: Schematic representation of (A) a venturi tube and of (B) a pitot tube.Encyclopædia 

Britannica, Inc. 

Thus one should be able to find vP, and hence the quantity Q (= APvP) that 
engineers refer to as the rate of discharge, by measuring the difference of 
level h of the fluid in the two side tubes shown in the diagram. At low velocities 
the pressure difference (pP - pQ) is greatly affected by viscosity (see 
below Viscosity), and equation (135) is unreliable in consequence. The venturi 
tube is normally used, however, when the velocity is large enough for the flow 
to be turbulent (see below Turbulence). In such a circumstance, equation 
(135) predicts values for Q that agree with values measured by more direct 
means to within a few parts percent, even though the flow pattern is not really 
steady at all. 

 

The other device is the pitot tube, which is illustrated in Figure 5B. The fluid 
streamlines divide as they approach the blunt end of this tube, and at the point 
marked Q in the diagram there is complete stagnation, since the fluid at this 
point is moving neither up nor down nor to the right. It follows immediately 
from Bernoulli’s law that 

 

As with the venturi tube, one should therefore be able to find vP from the level 
difference h. 
One other simple result deserves mention here. It concerns a jet of fluid 
emerging through a hole in the wall of a vessel filled with liquid under 
pressure. Observation of jets shows that after emerging they narrow slightly 
before settling down to a more or less uniform cross section known as 
the vena contracta. They do so because the streamlines are converging on 
the hole inside the vessel and are obliged to continue converging for a short 



while outside. It was Torricelli who first suggested that, if the pressure excess 
inside the vessel is generated by a head of liquid h, then the velocity v at the 
vena contracta is the velocity that a free particle would reach on falling 
through a height h—i.e., that 

 

This result is an immediate consequence, for an inviscid fluid, of the principle 
of energy conservation that Bernoulli’s law enshrines. 
In the following section, Bernoulli’s law is used in an indirect way to establish 
a formula for the speed at which disturbances travel over the surface of 
shallow water. The explanation of several interesting phenomena having to do 
with water waves is buried in this formula. Analogous phenomena dealing with 
sound waves in gases are discussed below in Compressible flow in gases, 
where an alternative form of Bernoulli’s law is introduced. This form of the law 
is restricted to gases in steady flow but is not restricted to flow velocities that 
are much less than the speed of sound. The complication that viscosity 
represents is again ignored throughout these two sections. 

 

Waves on shallow water 

Imagine a layer of water with a flat base that has a small step on its surface, 
dividing a region in which the depth of the water is uniformly equal to D from a 
region in which it is uniformly equal to D(1 + ε), with ε << 1. Let the water in 
the shallower region flow toward the step with some uniform speed V, 
as Figure 6A suggests, and let this speed be just sufficient to hold the step in 
the same position so that the flow pattern is a steady one. 
The continuity condition (i.e., the condition that as much water flows out to the 
left per unit time as flows in from the right) indicates that in the deeper region 
the speed of the water is V(1 + ε)−1. Hence by applying Bernoulli’s law to the 
points marked P and Q in the diagram, which lie on the same streamline and 
at both of which the pressure is atmospheric, one may deduce that 



 
Figure 6: Steps on the surface of shallow water.Encyclopædia Britannica, Inc. 

 

This result shows that, if the water in the shallower region is in fact stationary 
(see Figure 6B), the step advances over it with the speed V that equation 
(138) describes, and it reveals incidentally that behind the step the deeper 
water follows up with speed V[1 - (1 + ε)−1] ≈ εV. The argument may readily be 
extended to disturbances of the surface that are undulatory rather than 
steplike. Provided that the distance between successive crests—a distance 
known as the wavelength and denoted by λ—is much greater than the depth 
of the water, D, and provided that its amplitude is very much less than D, 
a wave travels over stationary water at a speed given by (138). Because their 
speed does not depend on wavelength, the waves are said to be 
nondispersive. 

 

Evidently waves that are approaching a shelving beach should slow down 
as D diminishes. If they are approaching it at an angle, the slowing-down 
effect bends, or refracts, the wave crests so that they are nearly parallel to the 
shore by the time they ultimately break. 
Suppose now that a small step of height εD (ε << 1) is traveling over 
stationary water of uniform depth D and that behind it is a second step of 
much the same height traveling in the same direction. Because the second 
step (suggested by a dotted line in Figure 6B) is traveling on a base that is 

moving at εSquare root of√(gD) and because the thickness of that base is (1 



+ ε)D rather than D, the speed of the second step is approximately (1 + 

3ε/2)Square root of√(gD). Since this is greater than Square root of√(gD), the 
second step is bound to catch up with the first. Hence, if there are a 
succession of infinitesimal steps that raise the depth continuously from D to 
some value D′, which differs significantly from D, then the ramp on the surface 
is bound to become steeper as it advances. It may be shown that if D′ 
exceeds about 1.3D, the ramp ultimately becomes a vertical step of finite 
height and that the step then “breaks.” A finite step that has broken 
dissipates energy as heat in the resultant foaming motion, and Bernoulli’s 
equation is no longer applicable to it. A simple argument based 
on conservation of momentum rather than energy, however, suffices to show 
that its velocity of propagation is 

 

Tidal bores, which may be observed on some estuaries, are examples on the 
large scale of the sort of phenomena to which (139) applies. Examples on a 
smaller scale include the hydraulic jumps that are commonly seen below weirs 
and sluice gates where a smooth stream of water suddenly rises at a foaming 
front. In this case, (139) describes the speed of the water, since the front itself 
is more or less stationary. 

 

When water is shallow but not extremely shallow, so that correction terms of 
the order of (D/λ)2 are significant, waves of small amplitude become 
slightly dispersive (see below Waves on deep water). In this case, a localized 
disturbance on the surface of a river or canal, which is guided by the banks in 
such a way that it can propagate in one direction only, is liable to spread as 
it propagates. If its amplitude is not small, however, the tendency to spread 
due to dispersion may in special circumstances be subtly balanced by the 
factors that cause waves of relatively large amplitude to form bores, and the 
result is a localized hump in the surface, of symmetrical shape, which does 
not spread at all. The phenomenon was first observed on a canal near 
Edinburgh in 1834 by a Scottish engineer named Scott Russell; he later wrote 
a graphic account of following on horseback, for well over a kilometre, a “large 
solitary elevation . . . which continued its course along the channel apparently 
without change of form.” What Scott Russell saw is now called a soliton 
Solitons on canals can have various widths, but the smaller the width the. 
larger the height must be and the faster the soliton travels. Thus, if a high, 
narrow soliton is formed behind a low, broad one, it will catch up with the low 



one. It turns out that, when the high soliton does so, it passes through the low 
one and emerges with its shape unchanged (see Figure 7). 

 
Figure 7: Interaction of two solitons (see text).Encyclopædia Britannica, Inc. 

It is now recognized that many of the nonlinear differential equations that 
appear in diverse branches of physics have solutions of large amplitude 
corresponding to solitons and that the remarkable capacity of solitons for 
surviving encounters with other solitons is universal. This discovery has 
stimulated much interest among mathematicians and physicists, and 
understanding of solitons is expanding rapidly. 

Compressible flow in gases 
Compressible flow refers to flow at velocities that are comparable to, or 
exceed, the speed of sound. The compressibility is relevant because at such 
velocities the variations in density that occur as the fluid moves from place to 
place cannot be ignored. 
Suppose that the fluid is a gas at a low enough pressure for the ideal equation 
of state, equation (118), to apply and that its thermal conductivity is so poor 
that the compressions and rarefactions undergone by each element of the gas 
may be treated as adiabatic (see above). In this case, it follows from equation 
(120) that the change of density accompanying any small change in 
pressure, dp, is such that 

 

 



This makes it possible to integrate the right-hand side of equation (131), and 
one thereby arrives at a version of Bernoulli’s law for a steady compressible 
flow of gases which states that 

 

is constant along a streamline. An equivalent statement is that 

 

is constant along a streamline. It is worth noting that, when a gas flows 
through a nozzle or through a shock front (see below), the flow, though 
adiabatic, may not be reversible in the thermodynamic sense. Thus 
the entropy of the gas is not necessarily constant in such flow, and as a 
consequence the application of equation (120) is open to question. 
Fortunately, the result expressed by (141) or (142) can be established by 
arguments that do not involve integration of (131). It is valid for steady 
adiabatic flow whether this is reversible or not. 

  

  

Bernoulli’s law in the form of (142) may be used to estimate the variation 
of temperature with height in the Earth’s atmosphere. Even on the calmest 
day the atmosphere is normally in motion because convection currents (see 
below Convection) are set up by heat derived from sunlight that is released at 
the Earth’s surface. The currents are indeed adiabatic to a good 
approximation, and their velocity is generally small enough for the term v2 in 
(142) to be negligible. One can therefore deduce without more ado that the 
temperature of the atmosphere should fall off in a linear fashion—i.e., that 

 

Here β is used to represent the temperature lapse rate, and the value 
suggested for this quantity, (Mg/Cp), is close to 10° C per kilometre for dry air. 
This prediction is not exactly fulfilled in practice. Within the troposphere 
(i.e., to the heights of about 10 kilometres to which convection currents 
extend), the mean temperature does decrease with height in a linear fashion, 
but β is only about 6.5° C per kilometre. It is the water vapour in the 
atmosphere, which condenses as the air rises and cools, that lowers the lapse 



rate to this value by increasing the effective value of Cp. The fact that the 
lapse rate is smaller for moist air than for dry air means that a stream of moist 
air which passes over a mountain range and which deposits its moisture as 
rain or snow at the summit is warmer when it descends to sea level on the 
other side of the range than it was when it started. The foehn wind of the Alps 
owes its warmth to this effect. 

The variation of the pressure of the atmosphere with height may be estimated 
in terms of β, using the equation 

 

This is obtained by integration of (123), using (118) and (143). 

  

  

In the form of equation (141), Bernoulli’s law may be used to calculate 
the speed of sound in gases. The argument is directly analogous to the one 
applied in the previous section to waves on shallow water—and, indeed, the 
diagrams in Figure 6 can serve to illustrate the argument here too, if they are 
regarded as plots of gas density (or else of pressure or temperature, which go 
hand in hand with density in adiabatic flow) versus position. The results of the 
argument will be stated without proof. If there exists an infinitesimal step in the 
density of the gas, it will remain stationary provided that the gas flows 
uniformly through it toward the region of higher density, with a velocity 

 

If the gas is stationary, then (145) describes the velocity with which the step 
moves. It also describes the speed of propagation of the sort of undulatory 
variation of density that constitutes a sound wave of fixed frequency or pitch. 
Because the speed of sound is independent of pitch, sound waves, like waves 
on shallow water, are nondispersive. This is just as well. It is only because 
there is no dispersion that one can understand the words of a distant speaker 
or listen to a symphony orchestra with pleasure from the back of an 
auditorium as well as from the front. 

 

It should be noted that the formula for the speed of sound in gases may be 
proved in other ways, and Newton came close to it a century before 



Bernoulli’s time. However, because Newton failed to appreciate the distinction 
between adiabatic and isothermal flow, his answer lacked the factor γ 
occurring in (145). The first person to correct this error was Pierre-Simon 
Laplace. 
The above statements apply to density steps or undulations, the amplitude of 
which is infinitesimal, and they need some modification if the amplitude is 
large. In the first place it is found, as for waves on shallow water and for very 
much the same reasons, that, where two small density steps are moving 
parallel to one another, the second is bound to catch up with the first. It 
follows that, if there exists a propagating region in which the density rises in a 
continuous fashion from ρ to ρ′, where (ρ′ - ρ) is not necessarily small, then 
the width of this region is bound to diminish as time passes. Ultimately 
a shock front develops over which the density—and hence the pressure and 
temperature—rises almost discontinuously. There are processes within the 
shock front, vaguely analogous on the molecular scale to the foaming of a 
breaking water wave, by which energy is dissipated as heat. The speed of 
propagation, Vsh, of a shock front in a gas that is stationary in front of it may be 
expressed in terms of Vs and Vs′, the velocities of small-amplitude sound 
waves in front of the shock and behind it, respectively, by the equation 

 

Thus, if the shock is a strong one (ρ′ >> ρ), Vsh may be significantly greater 
than both Vs and Vs′. 
Even the gentlest sound wave, in which density and pressure initially oscillate 
in a smooth and sinusoidal fashion, develops into a succession of weak shock 
fronts in time. More noticeable shock fronts are a feature of the flow of gases 
at supersonic speeds through the nozzles of jet engines and accompany 
projectiles that are moving through stationary air at supersonic speeds. In 
certain circumstances when a supersonic aircraft is following a curved path, 
the accompanying shock wave may accidentally reinforce itself in places and 
thereby become offensively noticeable as a “sonic boom,” which may break 
windowpanes and cause other damage. Strong shock fronts also occur 
immediately after explosions, of course, and when windowpanes are broken 
by an explosion, the broken glass tends to fall outward rather than inward. 
Such is the case because the glass is sucked out by the relatively low density 
and pressure that succeed the shock itself. 
The diagrams in Figure 8 show a well-known construction attributed to the 
Austrian physicist Ernst Mach that explains the origin of the shock front 
accompanying a supersonic projectile. The circular arcs in this figure 



represent cross sections through spherical disturbances that are spreading 
with speed Vs from centres (S′, S″, etc.), which mark the position of the moving 
source S at the time when they were emitted. If the source is something like 
the tip of an arrow, which disturbs the air by parting it as it travels along but 
which is inaudible when stationary, then each “disturbance” due to some 
infinitesimal displacement of the tip is a spherical shell of infinitesimal 
thickness within which a small radial velocity has been imparted to the air. 
There is an infinite number of such disturbances, overlapping one another, of 
which only a handful are represented in Figure 8. When the velocity of the 
source, U, is less than Vs (Figure 8A), the result of adding them together is the 
sort of steady backflow that is to be expected around a moving obstacle, and 
there is no sound emission in the normal sense; the source remains inaudible. 
When U exceeds Vs, however, the spherical disturbances reinforce one 
another, as Figure 8B shows, on a conical caustic surface, which makes an 
angle of sin−1 (U/V) to the line of travel of the source, and it is on this surface 
that a shock front is to be expected. The cone becomes sharper as the source 
speeds up. 

 
Figure 8: Mach's construction. (A) Source speed U less than speed of sound VS, (B) U greater 

than VS (see text).Encyclopædia Britannica, Inc. 

 


