
 

 

Viscosity 
 
As shown above, a number of phenomena of considerable physical interest can be 
discussed using little more than the law of conservation of energy, as expressed 
by Bernoulli’s law. However, the argument has so far been restricted to cases of 
steady flow. To discuss cases in which the flow is not steady, an equation of 
motion for fluids is needed, and one cannot write down a realistic equation of motion 
without facing up to the problems presented by viscosity, which have so far been 
deliberately set aside. 

 

Stresses in laminar motion 

The concept of viscosity was first formalized by Newton, who considered the shear 
stresses likely to arise when a fluid undergoes what is called laminar motion with the 
sort of velocity profile that is suggested in Figure 9A; the laminae here are planes 
normal to the x2-axis, and they are moving in the direction of the x1-axis with a 
velocity v1, which increases in a linear fashion with x2. Newton suggested that, as each 
lamina slips over the one below, it exerts a sort of frictional force upon the latter in the 
forward direction, in which case the upper lamina is bound to experience an equal 
reaction in the backward direction. The strength of these forces per unit 
area constitutes the component of shear stress normally written as σ12 (not to be 
confused with surface tension, for which the symbol σ has been used above). Figure 
9B shows, in elevation, an enlarged view of an infinitesimal element of the fluid of 
cubic shape, and the directions of the forces experienced by this cube associated with 
σ12 are indicated by arrows. Other arrows show the directions of the forces associated 
with the so-called normal stresses σ11 and σ22, which in the absence of motion of the 
fluid would both be equal, by Pascal’s law, to -p. Now σ12 is clearly zero when the rate 
of variation of velocity, ∂v1/∂x2, is zero, for then there is no slip, and presumably it 
increases monotonically as ∂v1/∂x2 increases. Newton made the plausible assumption 
that the two are linearly related—i.e., that 



 
Figure 9: Laminar motion and associated stresses.Encyclopædia Britannica, Inc. 

 

The full name for the coefficient η is shear viscosity to distinguish it from the bulk 
viscosity, b, which is defined below. The word shear, however, is frequently omitted 
in this context. 
Now if the only shear stress acting on the cubic element of fluid sketched in Figure 
9B were σ12, the cube would experience a torque tending to make it twist in a 
clockwise sense. Since the magnitude of the torque would vary like the third power of 
the linear dimensions of the cube, whereas the moment of inertia of the element would 
vary like the fifth power, the resultant angular acceleration for an infinitesimal cube 
would be infinite. One may infer that any tendency to twist in a clockwise sense gives 
rise instantaneously to an additional shear stress σ21, the direction of which is indicated 
in the diagram, and that σ12 and σ21 are equal at all times. It follows that equation (147) 
cannot be a complete expression for these shear stresses, for it does not include the 
possibility that the fluid is moving in the x2 direction, with a velocity v2 that varies 
with x1. The complete expression for what is called a Newtonian fluid is 

 

 

Similar expressions may be written down for σ23 (= σ32) and σ31 (= σ13). Since 
Newton’s day these hypothetical expressions have been fully substantiated for gases 
and simple liquids, not only by experiment but also by analysis of the molecular 
motions and molecular interactions in such fluids undergoing shear, and for such 



fluids one can even predict the magnitude of η with reasonable success. There do 
exist, however, more complicated fluids for which the Newtonian description of shear 
stress is inadequate, and some of these are very familiar in the home. In the whites of 
eggs, for example, and in most shampoos, there are long-chain molecules that become 
entangled with one another, and entanglement may hinder their efforts to respond to 
changes of environment associated with flow. As a result, the stresses acting in such 
fluids may reflect the deformations experienced by the fluid in the recent past as much 
as the instantaneous rate of deformation. Moreover, the relation between stress and 
rate of deformation may be far from linear. Non-Newtonian effects, interesting though 
they are, lie outside the scope of the present discussion, however. 
The sort of velocity profile that is suggested by Figure 9B may be established by 
containing the fluid between two parallel flat plates and moving one plate relative to 
the other. The possibility exists that in this situation the layers of fluid immediately in 
contact with each plate will slip over them with some finite velocity (indicated in the 
diagram by an arrow labeled vslip). If so, the frictional stresses associated with this slip 
must be such as to balance the shear stress η(∂v1/∂x2) exerted on each of these layers 
by the rest of the fluid. Little is known about fluid-solid frictional stresses, but 
intelligent guesswork suggests that they are proportional in magnitude to vslip and that, 
in the circumstances to which Figure 9A refers, the distance d below the surface of the 
stationary bottom plate at which the straight line representing the variation 
of v1 with x2 extrapolates to zero should be of the same order of magnitude as the 
diameter of a molecule if the fluid is a liquid or as the molecular “mean free path” if it 
is a gas. These distances are normally very small compared with the separation of the 
plates, D. Accordingly, fluid flow patterns may normally be treated as subject to the 
boundary condition that at a fluid-solid interface the relative velocity of the fluid is 
zero. No reliable evidence for failure of predictions based on this no-slip boundary 
condition has yet been found, except in the case of what is called Knudsen flow of 
gases (i.e., flow at such low pressures that the mean free path is comparable in length 
with the dimensions of the apparatus). 
If a fluid is flowing steadily between two parallel plates that are both stationary and if 
its velocity must be zero in contact with both of them, the velocity profile must 
necessarily have the form indicated in Figure 10. A force in the forward direction due 
to the shear stress η(∂v1/∂x2) is transmitted to the plates, and an equal force in the 
backward direction acts on the fluid. The motion therefore cannot be maintained 
unless the pressure acting on the fluid is greater on the left of the diagram than it is on 
the right. A full analysis shows the velocity profile to be parabolic, and it indicates 
that the rate of discharge is related to the pressure gradient by the equation 



 
Figure 10: Velocity profile for laminar flow between two plates (or inside a cylindrical tube), driven by a pressure 

gradient (see text).Encyclopædia Britannica, Inc. 

 

where W ( >> D) is the width of the plates, measured perpendicular to the diagram 
in Figure 10. A similar analysis of the problem of steady flow through a (horizontal) 
cylindrical pipe of uniform diameter D, to which Figure 10 could equally well apply, 
shows the rate of discharge in this case to be given by 

 

this famous result is known as Poiseuille’s equation, and the type of flow to which it 
refers is called Poiseuille flow. 

Bulk viscosity 

Viscosity may affect the normal stress components, σ11, σ22, and σ33, as well as the 
shear stress components. To see why this is so, one needs to examine the way in 
which stress components transform when one’s reference axes are rotated. Here, the 
result will be stated without proof that the general expression for σ11 consistent with 
(148) is 

 



 

On the right-hand side of this equation, p represents the equilibrium pressure defined 
in terms of local density and temperature by the equation of state, and b is another 
viscosity coefficient known as the bulk viscosity. 
The bulk viscosity is relevant only where the density is changing. Thus it plays a role 
in attenuating sound waves in fluids and may be estimated from the magnitude of the 
attenuation. If the fluid is effectively incompressible, however, so that changes 
of density may be ignored, the flow is everywhere subject to the continuity condition 
that 

 

The terms in (151) that involve b then cancel, and the expression simplifies to 

 

 

Similar equations may be written down for σ22 and σ33. These simpler expressions 
provide the basis for the argument that follows, and the bulk viscosity can be left on 
one side. 

Measurement of shear viscosity 
A variety of methods are available for the measurement of shear viscosity. One 
standard method involves measurement of the pressure gradient along a pipe for 
various rates of flow and application of Poiseuille’s equation. Other methods involve 
measurement either of the damping of the torsional oscillations of a solid disk 
supported between two parallel plates when fluid is admitted to the space between the 
plates, or of the effect of the fluid on the frequency of the oscillations. 

The Couette viscometer deserves a fuller explanation. In this device, the fluid 
occupies the space between two coaxial cylinders of radii a and b (> a); the outer 
cylinder is rotated with uniform angular velocity ω0, and the resultant torque 
transmitted to the inner stationary cylinder is measured. If both the terms on the right-
hand side of equation (148) are taken into account, the shear stress in the circulating 



fluid is found to be proportional to r(dω/dr) rather than to (dv/dr)—not an unexpected 
result, since it is only if ω, the angular velocity of the fluid, varies with radius r that 
there is any slip between one cylindrical lamina of fluid and the next. The torque 
transmitted through the fluid is therefore proportional to r3(dω/dr). In the steady state, 
the opposing torques acting on the inner and outer surfaces of each cylindrical lamina 
of fluid must be of equal magnitude—otherwise the laminae accelerate—and this 
means that r3(dω/dr) must be independent of r. There are two basic modes of motion 
for a circulating fluid that satisfy this condition: in one, the liquid rotates as a solid 
body would, with an angular velocity that does not vary with r, and the torque is 
everywhere zero; in the other, ω varies like r−2. The angular velocity of the fluid in a 
Couette viscometer can be viewed as a mixture of these two modes in proportions that 
satisfy the boundary conditions at r = a and r = b. The torque transmitted per unit 
length of the cylinders turns out to be given by 

 

It may be added that if the inner cylinder is absent, the steady flow pattern consists 
only of the first mode—i.e., the fluid rotates like a solid body with uniform angular 
velocity ω0. If the outer cylinder is absent, however, and the inner one rotates, it then 
consists only of the second mode. The angular velocity falls off like r−2, and the 
velocity v falls off like r−1. 
In the equation of motion given in the following section, the shear viscosity occurs 
only in the combination (η/ρ). This combination occurs so frequently in arguments of 
fluid dynamics that it has been given a special name—kinetic viscosity. The kinetic 
viscosity at normal temperatures and pressures is about 10−6 square metre per second 
for water and about 1.5 × 10−5 square metre per second for air. 

 

 


