Specific Heat in Terms of Degree of Freedom.

We know that kinetic energy of one mole of the gas, having f degrees of freedom can be given by

$$E = \frac{f}{2}RT$$
.....(i)

where T is the temperature of the gas but from the definition of Cv, if dE is a small amount of heat energy required to raise the temperature of 1 gm mole of the gas at constant volume, through a temperature dT then

$$dE = \mu C_{\nu} dT = C_{\nu} dT \text{ or } C_{\nu} = \frac{dE}{dT} \qquad \text{[As } \mu = 1\text{]} \qquad \dots (\text{ii)}$$

We of E from equation (i) we get
$$C_{\nu} = \frac{d}{dT} \left(\frac{f}{2}RT\right) = \frac{f}{2}R$$

Putting the valu

 $C_p = \left(\frac{f}{2} + 1\right)R$

$$C_v = \frac{f}{2}R$$

...

From the Mayer's formula $C_p - C_v = R \Rightarrow C_p = C_v + R = \frac{f}{2}R + R = \left(\frac{f}{2} + 1\right)R$

...

$$\gamma = \frac{C_p}{C_v} = \frac{\left(\frac{f}{2} + 1\right)R}{\frac{f}{2}R} = 1 + \frac{2}{f}$$

Ratio of Cp and Cv :

 $\gamma = 1 + \frac{2}{f}$ *.*..

Important points

- (i) Value of γ is always more than 1. So we can say that always Cp > Cv .
- (ii) Value of $\boldsymbol{\gamma}$ is different for monoatomic, diatomic and triatomic gases.

(iii) As

$$\gamma = 1 + \frac{2}{f} \Longrightarrow \frac{2}{f} = \gamma - 1 \Longrightarrow \frac{f}{2} = \frac{1}{\gamma - 1}$$

$$\therefore C_{\nu} = \frac{f}{2}R = \frac{R}{\gamma - 1}$$

$$\therefore C_{p} = \left(\frac{f}{2} + 1\right)R = \left(\frac{1}{\gamma - 1} + 1\right)R = \left(\frac{\gamma}{\gamma - 1}\right)R$$
and

Specific heat and kinetic energy for different gases

		Monoatomic	Diatomic	Triatomic non-linear	Triatomic linear
Atomicity	А	1	2	3	3
Restriction	В	0	1	3	2
Degree of freedom	f = 3A – B	3	5	6	7
Molar specific heat at constant volume	$C_{\nu} = \frac{f}{2}R = \frac{R}{\gamma - 1}$	$\frac{3}{2}R$	$\frac{5}{2}R$	3R	$\frac{7}{2}R$
Molar specific heat at constant pressure	$C_p = \left(\frac{f}{2} + 1\right)R = \left(\frac{\gamma}{\gamma - 1}\right)R$	$\frac{5}{2}R$	$\frac{7}{2}R$	4R	$\frac{9}{2}R$
Ratio of Cp and Cv	$\gamma = \frac{C_p}{C_v} = 1 + \frac{2}{f}$	$\frac{5}{3} \simeq 1.66$	$\frac{7}{5} \approx 1.4$	$\frac{4}{3} \simeq 1.33$	$\frac{9}{7} \simeq 1.28$
Kinetic energy of 1 mole	$E_{\text{mole}} = \frac{f}{2}RT$	$\frac{3}{2}RT$	$\frac{5}{2}RT$	3RT	$\frac{7}{2}RT$

Kinetic energy of	$E_{\text{molecule}} = \frac{f}{2}kT$	$\frac{3}{kT}$	5_{kT}	ЭРТ	$\frac{7}{kT}$
1 molecule	2	$\frac{1}{2}^{\kappa I}$	$\frac{1}{2}^{\kappa I}$	SKI	$\frac{1}{2}^{\kappa I}$
Kinetic energy of	$E_{\text{gram}} = \frac{f}{2}rT$	$\frac{3}{rT}$	$\frac{5}{rT}$	2rT	$\frac{7}{rT}$
1 gm	2	$\frac{1}{2}$	$\frac{1}{2}$	511	$\frac{1}{2}$