Various Speeds of Gas Molecules.

The motion of molecules in a gas is characterized by any of the following three speeds.
(1) Root mean square speed: It is defined as the square root of mean of squares of the speed of different molecules i.e. $v_{r m s}=\sqrt{\frac{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}+\ldots .}{N}}$
(i) From the expression for pressure of ideal gas $P=\frac{1}{3} \frac{m N}{V} v_{r m s}^{2}$

$$
\begin{align*}
& v_{r m s}=\sqrt{\frac{3 P V}{m N}}=\sqrt{\frac{3 P V}{\text { Mass of gas }}}=\sqrt{\frac{3 P}{\rho}} \\
& v_{r m s}=\sqrt{\frac{3 P V}{\text { Mass of gas }}}=\sqrt{\frac{3 \mu R T}{\mu M}}=\sqrt{\frac{3 R T}{M}} \tag{ii}\\
& {\left[\text { As } \rho=\frac{\text { Mass of gas }}{V}\right]} \\
& \text { [As if } M \text { is the molecular weight of gas } \\
& v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 N_{A} k T}{N_{A} M}}=\sqrt{\frac{3 k T}{m}}
\end{align*}
$$

$$
\begin{align*}
& v_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 N_{A} k T}{N_{A} M}}=\sqrt{\frac{3 k T}{m}} \tag{iii}\\
& \text { [As M = NAm and } R=\text { NAk] } \\
& \therefore \text { Root mean square velocity } \\
& v_{r m s}=\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 k T}{m}}
\end{align*}
$$

Important points
(i) With rise in temperature rms speed of gas molecules increases as $v_{r m s} \propto \sqrt{T}$.
(ii) With increase in molecular weight rms speed of gas molecule decreases as $v_{r m s} \propto \frac{1}{\sqrt{M}}$.
e.g., rms speed of hydrogen molecules is four times that of oxygen molecules at the same temperature.
(iii) rms speed of gas molecules is of the order of km / s
e.g., At NTP for hydrogen gas $\left(v_{r m s}\right)=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \times 8.31 \times 273}{2 \times 10^{3}}}=1840 \mathrm{~m} / \mathrm{s}$.
(iv) rms speed of gas molecules is $\sqrt{\frac{3}{\gamma}}$ times that of speed of sound in gas

$$
\text { As } v_{r m s}=\sqrt{\frac{3 R T}{M}} \quad \text { and } \quad v_{s}=\sqrt{\frac{\gamma R T}{M}} \quad \therefore \quad v_{r m s}=\sqrt{\frac{3}{\gamma}} v_{s}
$$

(v) rms speed of gas molecules does not depends on the pressure of gas (if temperature remains constant) because $\mathrm{P} \propto \rho$ (Boyle's law) if pressure is increased n times then density will also increases by n times but vrms remains constant.
(vi) Moon has no atmosphere because vrms of gas molecules is more than escape velocity (ve).

A planet or satellite will have atmosphere only and only if $v_{r m s}<v_{e}$
(vii) At T = 0; vrms = 0 i.e. the rms speed of molecules of a gas is zero at 0 K . This temperature is called absolute zero.
(2) Most probable speed: The particles of a gas have a range of speeds. This is defined as the speed which is possessed by maximum fraction of total number of molecules of the gas. e.g., if speeds of 10 molecules of a gas are $1,2,2,3,3,3,4,5,6,6 \mathrm{~km} / \mathrm{s}$, then the most probable speed is $3 \mathrm{~km} / \mathrm{s}$, as maximum fraction of total molecules possess this speed.
Most probable speed $v_{m p}=\sqrt{\frac{2 P}{\rho}}=\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 k T}{m}}$
(3) Average speed: It is the arithmetic mean of the speeds of molecules in a gas at given temperature.

$$
v_{a v}=\frac{v_{1}+v_{2}+v_{3}+v_{4}+\ldots \ldots}{N}
$$

and according to kinetic theory of gases
Average speed $v_{a v}=\sqrt{\frac{8 P}{\pi \rho}}=\sqrt{\frac{8}{\pi} \frac{R T}{M}}=\sqrt{\frac{8}{\pi} \frac{k T}{m}}$

Note: vrms > vav > vmp (order remembering trick) (RAM)
vrms:vav:vmp $=\sqrt{3}: \sqrt{\frac{8}{\pi}}: \sqrt{2}=\sqrt{3}: \sqrt{2.5}: \sqrt{2}$

For oxygen gas molecules vrms $=461 \mathrm{~m} / \mathrm{s}, \mathrm{vav}=424.7 \mathrm{~m} / \mathrm{s}$ and $\mathrm{vrms}=376.4 \mathrm{~m} / \mathrm{s}$

