Combination of Conductors.

(1) Series combination:

Let n slabs each of cross-sectional area A, lengths $l_{1}, l_{2}, l_{3}, \ldots \ldots . l_{n}$ and conductivities $K_{1}, K_{2}, K_{3} \ldots \ldots K_{n}$ respectively be connected in the series Heat current is the same in all the conductors.

i.e. t

$$
\frac{K_{1} A\left(\theta_{1}-\theta_{2}\right)}{l_{1}}=\frac{K_{2} A\left(\theta_{2}-\theta_{3}\right)}{l_{2}}=\frac{K_{3} A\left(\theta_{3}-\theta_{4}\right)}{l_{3}}=\ldots \ldots . .=\frac{K_{n} A\left(\theta_{n-1}-\theta_{n}\right)}{l_{n}}
$$

(i) Equivalent resistance $R=R_{1}+R_{2}+R_{3}+\ldots . . R_{n}$
(ii) If K_{s} is equivalent conductivity, then from relation $R=\frac{l}{K A}$

$$
\begin{aligned}
& \frac{l_{1}+l_{2}+l_{3}+\ldots . l_{n}}{K_{s}}=\frac{l_{1}}{K_{1} A}+\frac{l_{2}}{K_{2} A}+\frac{l_{3}}{K_{3} A}+\ldots .+\frac{l_{n}}{K_{n} A} \\
& K_{s}=\frac{l_{1}+l_{2}+l_{3}+\ldots \ldots . l_{n}}{\frac{l_{1}}{K_{1}}+\frac{l_{2}}{K_{2}}+\frac{l_{3}}{K_{3}}+\ldots \ldots . . \frac{l_{n}}{K_{n}}}
\end{aligned}
$$

(iii) Equivalent thermal conductivity for n slabs of equal length

$$
K=\frac{n}{\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{K_{3}}+\ldots . . \frac{1}{K_{n}}}
$$

For two slabs of equal length, $K=\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
(iv) Temperature of interface of composite bar: Let the two bars are arranged in series as shown in the figure.

Then heat current is same in the two conductors.
i.e.

$$
\frac{Q}{t}=\frac{K_{1} A\left(\theta_{1}-\theta\right)}{l_{1}}=\frac{K_{2} A\left(\theta-\theta_{2}\right)}{l_{2}}
$$

By solving we get

$$
\theta=\frac{\frac{K_{1}}{l_{1}} \theta_{1}+\frac{K_{2}}{l_{2}} \theta_{2}}{\frac{K_{1}}{l_{1}}+\frac{K_{2}}{l_{2}}}
$$

If $\left(l_{1}=l_{2}=l\right)$ then $\theta=\frac{K_{1} \theta_{1}+K_{2} \theta_{2}}{K_{1}+K_{2}}$
(2) Parallel Combination

Let n slabs each of length I , areas $A_{1}, A_{2}, A_{3}, \ldots . . A_{n}$ and thermal conductivities $K_{1}, K_{2}, K_{3}, \ldots \ldots K_{n}$ are connected in parallel then.
(i) Equivalent resistance $\quad \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots . \frac{1}{R_{n}}$
(ii) Temperature gradient across each slab will be same.
(iii) Heat current in each slab will be different. Net heat current will be the sum of heat currents through individual slabs. i.e. $H=H_{1}+H_{2}+H_{3}+\ldots . H_{n}$
$\frac{K\left(A_{1}+A_{2}+A_{3}+\ldots . .+A_{n}\right)\left(\theta_{1}-\theta_{2}\right)}{l}$
$=\frac{K_{1} A_{1}\left(\theta_{1}-\theta_{2}\right)}{l}+\frac{K_{2} A_{2}\left(\theta_{1}-\theta_{2}\right)}{l}+\frac{K_{3} A_{3}\left(\theta_{1}-\theta_{2}\right)}{l} \ldots \ldots .+\frac{K_{n} A_{n}\left(\theta_{1}-\theta_{2}\right)}{l}$
$\therefore \quad K=\frac{K_{1} A_{1}+K_{2} A_{2}+K_{3} A_{3}+\ldots . . K_{n} A_{n}}{A_{1}+A_{2}+A_{3}+\ldots . . A_{n}}$
For n slabs of equal area $K=\frac{K_{1}+K_{2}+K_{3}+\ldots . . K_{n}}{n}$

Equivalent thermal conductivity for two slabs of equal area

$$
K=\frac{K_{1}+K_{2}}{2}
$$

