Acceleration in S.H.M.

The acceleration of the particle executing S.H.M. at any instant, is defined as the rate of change of its velocity at that instant. So acceleration $A=\frac{d v}{d t}=\frac{d}{d t}(a \omega \cos \omega t)$

$$
\begin{align*}
& A=-\omega^{2} a \sin \omega t \tag{i}\\
& A=-\omega^{2} y \tag{ii}
\end{align*}
$$

[As
$y=a \sin \omega t]$

Important points

(i) In S.H.M. as \mid Acceleration $\mid=\omega^{2} y$ is not constant. So equations of translatory motion cannot be applied.
(ii) In S.H.M. acceleration is maximum at extreme position.

From equation (i) $\left|A_{\text {max }}\right|=\omega^{2} a \quad$ when $\quad|\sin \omega t|=\operatorname{maximum}=1$ i.e. At $t=\frac{T}{4}$ or $\omega t=\frac{\pi}{2}$
From equation (ii) $\left|A_{\text {max }}\right|=\omega^{2} a \quad$ when $y=a$
(iii) In S.H.M. acceleration is minimum at mean position

From equation (i) $A_{\text {min }}=0 \quad$ when $\sin \omega t=0$ i.e. At $t=0$ or $t=\frac{T}{2}$ or $\omega t=\pi$
From equation (ii) $A_{\text {min }}=0$ when $y=0$
(iv) Acceleration is always directed towards the mean position and so is always opposite to displacement
i.e. $\quad A \propto-y$

