Differential Equation of S.H.M.

For S.H.M. (linear) Acceleration ∞ – (Displacement) $A \propto -y$ or $A = -\omega^2 y$ $d^2 y$

or

$$\frac{d}{dt^2} \frac{y}{dt^2} = -\omega^2 y$$
or

$$m \frac{d^2 y}{dt^2} + ky = 0$$
[As $\omega = \sqrt{\frac{k}{m}}$]
For angular S.H.M. $\tau = -c\theta$ and $\frac{d^2\theta}{dt^2} + \omega^2\theta = 0$
Where $\omega^2 = \frac{c}{I}$ [As c = Restoring torque constant and I = Moment of inertia]