## Various Formulae of S.H.M.



| $R=$ radius of the bowl <br> $r=$ radius of the ball | $L$ = length of the wire <br> $\mathrm{Y}=$ young's modulus of wire <br> $A=$ area of cross section of wire |
| :---: | :---: |
| S.H.M. of a piston in a cylinder $\begin{aligned} & T=2 \pi \sqrt{\frac{M h}{P A}} \\ & \mathrm{M}=\text { mass of the piston } \\ & \mathrm{A}=\text { area of cross section } \\ & \mathrm{h}=\text { height of cylinder } \\ & \mathrm{P}=\text { pressure in a cylinder } \end{aligned}$ | S.H.M of a cubical block $\begin{aligned} & T=2 \pi \sqrt{\frac{M}{\eta L}} \\ & \mathrm{M}=\text { mass of the block } \\ & \mathrm{L}=\text { length of side of cube } \\ & \eta=\text { modulus of rigidity } \end{aligned}$ |
| S.H.M. of a body in a tunnel dug along any chord of earth $T=2 \pi \sqrt{\frac{R}{g}}=84.6 \text { minutes }$ | S.H.M. of body in the tunnel dug along the diameter of earth $\begin{aligned} & T=2 \pi \sqrt{\frac{R}{g}} \\ & \mathrm{~T}=84.6 \text { minutes } \\ & \mathrm{R}=\text { radius of the earth }=6400 \mathrm{~km} \\ & \mathrm{~g}=\text { acceleration due to gravity }=9.8 \mathrm{~m} / \mathrm{s} 2 \text { at earth's } \\ & \text { surface } \end{aligned}$ |
| S.H.M. of a conical pendulum $\begin{aligned} & T=2 \pi \sqrt{\frac{L \cos \theta}{g}} \\ & \mathrm{~L}=\text { length of string } \\ & \theta=\text { angle of string from the vertical } \\ & \mathrm{g}=\text { acceleration due to gravity } \end{aligned}$ | S.H.M. of L-C circuit $\begin{aligned} & T=2 \pi \sqrt{L C} \\ & \mathrm{~L}=\text { coefficient of self-inductance } \\ & \mathrm{C}=\text { capacity of condenser } \end{aligned}$ |

